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Introduction Model and identification Estimation and inference Impulse responses Risk calculations Conclusion
Motivation

• How much are households willing to give up to eliminate business cycles?
◦ Lucas (1987, 2003): 0.05% of consumption.
◦ Representative agents with frictions and heterogeneous agents: [0.01%, 7.4%].

➡ Otrok (2001), Storesletten, Telmer, Yaron (2001), Gaĺı, Gertler, López-Salido (2007),Krebs (2007), Barlevy (2006), ...

• Typical answer relies on structural models:
◦ Calibration/estimation using macro time series/micro data moments.
◦ Discretization + log-linearization + linear state-space techniques.
◦ Recent progress in estimation using micro data directly, but not yet widely adopted.

• Goal: nonlinear reduced form with rich micro dynamics and macro uncertainty.
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This paper

• Nonlinear micro income process with macro business cycle state:
”i t = Q”(”i ;t−1; Zt ; Zt−1; ui t); Zt = QZ(Zt−1; Vt);

ui t and Vt are micro and macro shocks, ”i t and Zt are potentially unobserved.

• We study the (nonparametric) identification of the model:
◦ Time series of panels + macroeconometric/microeconometric ID techniques.

• We propose estimation and inference using a flexible parametric version:
◦ Can be implemented via stable simulation-based algorithms.
◦ Robust to some forms of cross-sectional dependence in uit (omitted macro shocks).
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This paper

• We develop methodology for impulse response function analysis:
◦ What does “shock” mean in our reduced-form/semi-structural setup?
◦ How should we measure the importance of macro/micro shocks?
◦ Define local shocks that match a certain state perturbation experiment.

• We fit our model to US household income + macro time series data:
◦ Time series of panels spanning 1970-2019 from the PSID (seven recessions).

• Main findings:
◦ Income persistence increases for low-” and decreases for high-” during recessions.
◦ Recessions shift conditional skewness of ” towards negative at most income levels.
◦ Large cost of business cycles from nonlinear micro impact of macro shocks.
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Selected literature

• Income dynamics (with and without business cycles):
Storesletten, Telmer, Yaron (2004), Guvenen, Ozkan, Song (2014), Arellano, Blundell, Bonhomme
(2017), Guvenen, McKay, Ryan (2022), Guvenen, Pistaferri, Violante (2022), GRID project, ...

• Heterogeneous agents estimation using micro data:
Arellano, Bonhomme (2017), Liu, Plagborg-Møller (2023), Chang, Chen, Schorfheide (2024)

• Nonlinear IRFs:
Gallant, Rossi, Tauchen (1993)

➡ This paper: semi-structural + nonlinear micro dynamics + aggregate shocks
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Model: income process

• Permanent+transitory decomposition of (log) income y :
yi t = ”i t + "i t :

• Nonlinear income process (Arellano, Blundell, Bonhomme, 2017):
”i t = Q”(”i ;t−1; ui t);

"i t = Q"(ei t);

ui t ; ei t mutually/serially independent U(0; 1) rv’s.
• Could also include observable covariates xi t (e.g., age) in Q” , Q".
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Model: income process

• Permanent+transitory decomposition of (log) income y :
yi t = ”i t + "i t :

• Nonlinear income process with macro state variable Zt :
”i t = Q”(”i ;t−1; Zt ; Zt−1; ui t);

"i t = Q"(Zt ; Zt−1; ei t);

ui t ; ei t mutually/serially independent U(0; 1) rv’s conditional on {Zfi}.
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Model: business cycle state

• Factor model for macro data W = (GDP;C; I;urate;hours):
Wt = ΛZt + Et :

• Law of motion for macro state and idiosyncratic error:
Zt = ΦZt−1 +Σ

1=2
V Vt = QZ(Zt−1; Vt);

Et = Σ
1=2
E et ;

Vt ; et mutually/serially independent N(0; I) rv’s.
• Could allow for higher-order AR dynamics, heteroskedasticity, nonlinearities, etc.
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Model: macro state in US data
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Objects of empirical interest
• Measures of nonlinear persistence and skewness:

ȷ(u; ”; Z̃; Z) =
@Q”(”; Z̃; Z; u)

@”
;

sk(”; Z̃; Z) = Q”(”; Z̃; Z; u0) + Q”(”; Z̃; Z; 1− u0)− 2Q”

“
”; Z̃; Z; 12

”
Q”(”; Z̃; Z; u0)− Q”(”; Z̃; Z; 1− u0)

:

◦ Economic question is how income risk nonlinearities change over the business cycle.

• We are also interested in IRFs with respect to macro/micro shocks (more later).
• Broadly, decompose income risk in terms of micro/macro shocks (akin to FEVD).
➡ Identification, estimation, inference of (functionals of) Q”; QZ .
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Aside: reduced forms for heterogeneous agents models

• Recursive equilibria typically imply Markovian law of motion (Q”; QZ).
• Example.

◦ Consumer maximizes EˆP∞
t=1 ˛

tu(cit)
˜ subject to sequence of budget equations

b(cit ; ”it + "it ; ai ;t+1; ait ; Rt) = 0 with assets ait and interest rate Rt .
◦ Under bounded rationality (à la Krusell, Smith (1998)),

cit = gc(”it ; "it ; ait ; Z̄t);

ai ;t+1 = ga(”it ; "it ; ait ; Z̄t);

Z̄t = (Zt ; Rt ;moments of ait-distribution)
◦ ”̄it = (”it ; "it ; cit ; ait) and Z̄t follow restricted/multivariate version of (Q”; QZ).

Almuzara—Arellano—Blundell—Bonhomme Micro income processes with macro shocks 9 / 31



Introduction Model and identification Estimation and inference Impulse responses Risk calculations Conclusion
Identification: time series of panels

• Researcher knows densities f `{Wt}
∞
t=−∞

´ and f “{yi ;t+s−1}
S
s=1

˛̨̨
{Wt+s−1}

S
s=1

”.

• Conceptually, infinite-sample counterpart to a researcher who observes
◦ Time series of macro data Wt for t = 1; : : : ; T .
◦ Time series of panels n{yi ;t+s−1}

S
s=1

o
i∈It

for t = 1; : : : ; T .
- Note: i ∈ It does not preclude (nor imply) i ∈ Ifi for fi ̸= t .- Special cases: rotating/overlapping panels, a single long panel.- Practical considerations: representativeness and colinear covariates (e.g., age).- Precedent: Storesletten, Telmer, Yaron (2004).

• Identification for large T and Nt ≡ #It with S fixed.
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Identification: main result

Identification of macro state process
Suppose (upper block of Λ) = I, eigenvals of Φ within the unit circle and ΣE diagonal.
Then, QZ is identified from f ({Wt}∞t=−∞).

Identification of micro process with macro statesSuppose
i {yi ;t+s−1}Ss=1 independent of {Wt+s−1}Ss=1 given {Zt+s−1}Ss=1,
ii
n
f ({Zt+s−1}Ss=1|{Wt+s−1}Ss=1 = w) : w ∈ Rdim(W )S

o complete,
iii S ≥ 4 + boundedness/completeness on f “{yi ;t+s−1; ”i ;t+s−1}Ss=1

˛̨̨
{Zt+s−1}Ss=1

”.
Then, Q” is identified from f

“
{yi ;t+s−1}Ss=1

˛̨̨
{Wt+s−1}Ss=1

”.
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Identification: discussion

• Sketch of the proof:
◦ (i) is similar to Liu, Plagborg-Møller (2023, A1.2) and implies

f (yi |w) =

Z
f (yi |z) f (w|z) dz:

◦ Operator [La|bh](a) = R f (a|b)h(b)db =⇒ Lyi |z = Lyi |wL
−1
w|z (inverse exists by (ii)).

◦ (iii) delivers Arellano, Blundell, Bonhomme (2017) microeconometric identification.
• Key: concurrent time series variation between micro and macro data.
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Data: household income

• PSID:
◦ Interviewed an initial sample representative of US households in 1968.
◦ Thereafter, kept track of initial households and their offspring:

- E.g., if daughter moves out to form her own household, added as a new unit.
◦ Refresher/immigrant samples to (try to) preserve representativity.
◦ Interviews are annual between 1968 to 1997, biennial between 1999 to 2019.

• We use the PSID to construct a time series of panels:
◦ Each panel has S = 4 and made biennial for comparability (but we use all years).

- Note: y is biennial while Z is quarterly.
◦ We look at male earnings and family income:

- Male earnings: labor income of representative person (male).- Family income: labor income of representative person (male/married) and spouse + transfers.
◦ y = log income net of education/race/family size/state of residence/etc.

Almuzara—Arellano—Blundell—Bonhomme Micro income processes with macro shocks 13 / 31



Introduction Model and identification Estimation and inference Impulse responses Risk calculations Conclusion
Data: household income

• PSID:
◦ Interviewed an initial sample representative of US households in 1968.
◦ Thereafter, kept track of initial households and their offspring:

- E.g., if daughter moves out to form her own household, added as a new unit.
◦ Refresher/immigrant samples to (try to) preserve representativity.
◦ Interviews are annual between 1968 to 1997, biennial between 1999 to 2019.

• We use the PSID to construct a time series of panels:
◦ Each panel has S = 4 and made biennial for comparability (but we use all years).

- Note: y is biennial while Z is quarterly.
◦ We look at male earnings and family income:

- Male earnings: labor income of representative person (male).- Family income: labor income of representative person (male/married) and spouse + transfers.
◦ y = log income net of education/race/family size/state of residence/etc.

Almuzara—Arellano—Blundell—Bonhomme Micro income processes with macro shocks 13 / 31



Estimation and inference



Introduction Model and identification Estimation and inference Impulse responses Risk calculations Conclusion
Estimation: flexible parametric model

• Flexible model of quantile functions:
Q”(”; Zt ; Zt−1; u) =

JX
j=1

KX
k=1

 j(”)„jk(u)’k(Zt ; Zt−1)

=  (”)′Θ(u)’(Zt ; Zt−1)

=  (”)′∆t(u):

◦  (·); ’(·; ·) are vectors of known basis functions (e.g., orthogonal polynomials).
◦ Θ(·) is matrix of linear splines supported on (ū1; :::; ūL) =⇒ denote parameters by „.
◦ ∆t(·) too but depends on time series of parameters ‹t .

• Nonparametric (Sieve) if we let J;K; L→ ∞, but we take a parametric perspective.
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Estimation: complete data moments

• Similar approach to quantile functions of base-period ” and ".
• Once we know „, we can recover persistence, skewness, IRFs, etc.

• If ” observed, we could use linear quantile regressions: for fi = ū1; :::; ūL,
E

»„
 (”i ;t−1)⊗ ’(Zt ; Zt−1)

«
· ‌fi
„
”i t −  (”i ;t−1)

′Θ(fi)’(Zt ; Zt−1)

«–
= 0d×1

where ‌fi (·) is the derivative of the “check” function x 7→ (fi − 1[x < 0])x .
• Our model specifies the distribution of (”; Z) given (y;W ):

◦ Pseudo-likelihood EM: Arcidiacono, Jones (2003), Arellano, Bonhomme (2016).
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Estimation: stochastic EM algorithm

• Suppose {Zt}1≤t≤T observed (e.g., smoothed estimates).
◦ Notation: ”t = {”i ;t+s−1}1≤s≤S; i∈It

and yt = {yi ;t+s−1}1≤s≤S; i∈It
.

Algorithm. Start with „̂(0) and for m = 1; :::;M:
1 Stochastic E step:

Draw {Z(m)
t }1≤t≤T from f ({Zt}1≤t≤T |{Wt}1≤t≤T ; –̂).

- Draw {”(m)
t }1≤t≤T from f

“
{”t}1≤t≤T

˛̨̨
{yt ; Zt}1≤t≤T ; „̂(m−1)

”.
2 Pseudo M step:

- Update „̂(m) by linear quantile regressions using {”(m)
t ; Zt}1≤t≤T .

Once finished, set „̂ = (—M)−1PM
m=(1−—)M „̂

(m) for some 0 < — < 1.
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Estimation: stochastic EM algorithm
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Sampling properties

• One concern is cross-sectional dependence in ui t . Factor model for ranks:
ui t = Φ

„q
1− ‚2Ui t + ‚Ft

«
;

Ui t iid over i ; t , Ft iid over t , mutually independent N(0; 1) conditional on {Zfi}.

• Asymptotic properties. As N; T → ∞, under regularity conditions,
◦ Consistency: „̂ p−−−−→ „.
◦ Asymptotic normality: √T („̂ − „)

d−−−−→ N(0d×1;Ω).
- Convergence rate is slower than standard panel rate √

NT unless ‚ = 0.
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• One concern is cross-sectional dependence in ui t . Factor model for ranks:
ui t = Φ

„q
1− ‚2Ui t + ‚Ft

«
;

Ui t iid over i ; t , Ft iid over t , mutually independent N(0; 1) conditional on {Zfi}.
• Asymptotic properties. As N; T → ∞, under regularity conditions,
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Empirical analysis: implementation

• Specification of Q”:
◦  is third-order Hermite polyn on ” × second-order Hermite polyn on age h.
◦ ’ is second-order Hermite polyn on (Zt ; Zt−1) but with restrictions.

- Linear term excluded from ”, h interactions, quadratic term only enters intercept.
◦ Grid on rank space has L = 11 and we model tails u < ū1, u > ūL as exponential.

- Q” has 288 = 26× 11 + 2 parameters, observation count ≈ 200:000.
• Specification of Qinit (base-period ”) and Q":

◦ We include second-order Hermite polyn on age + L = 11 + exponential tails.
◦ We use time effects instead of functions of (Zt ; Zt−1).

• Confidence intervals via parametric bootstrap using factor model for ranks.
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Nonlinear persistence in steady state

(a) Male earnings (b) Family income
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Nonlinear IRFs

• Nonlinear environment poses some complications to interpretation of shocks:
◦ In the linear context, IRFs are derivatives with respect to uit ; Vt .
◦ Innovations uit ; Vt defined by normalizations adopted for convenience, not economics.
◦ IRFs/FEVDs as transmission/importance of some shock are subject to ambiguity.

• We extend to our macro-micro setup the idea in Gallant, Rossi, Tauchen (1993):
◦ Idea. Fix initial state benchmark values, perturb them and track evolution.

• Perturbation: »(‹) such that g(xb) = g(xb + »(‹))− ‹.
◦ Rule g translates change ‹ to relevant units, comparable across individuals.

- Unit perturbation: g(x) = x .- Rank perturbation: g(x) = F (x).- Lorenz-curve perturbation: g(x) = (
R∞
−∞ ‰f (‰) d‰)−1 R x

−∞ ‰f (‰) d‰.
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Nonlinear IRFs: defining innovations

• Macro impulse response of ”:
◦ For benchmark Z1 = Zb and perturbation g(Zb) = g(Zb + »(‹))− ‹:

IRFit(Zb; ”i0; Z0) = lim
‹→0

E
h
”it

˛̨̨
Zi1 = Zb + »(‹); ”i0; Z0

i
− E

h
”it

˛̨̨
Zi1 = Zb; ”i0; Z0

i
‹

:

◦ Implied macro shock:
Ṽ1 = g (QZ(Z1|Z0))− g(Zb)

which reduces to Ṽ1 = V1 when g is the unit perturbation rule.
• IRF = derivative of expectation with respect to implied innovation (only works locally).
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Nonlinear IRFs: defining innovations

• Micro impulse response of ”:
◦ For benchmark ”i1 = ”b and perturbation gi (”b) = gi (”

b + »i (‹))− ‹:

IRFit(”b; Z1; Z0) = lim
‹→0

E
h
”it

˛̨̨
”i1 = ”b + »i (‹); Z1; Z0

i
− E

h
”it

˛̨̨
”i1 = ”b; Z1; Z0

i
‹

:

◦ Implied micro shock:
ũi1 = gi

`
Q”(”i1|”i0; Z1; Z0)

´
− gi (”

b)

which reduces to ũi1 = ui1 when g is the rank perturbation rule.
• IRF = derivative of expectation with respect to implied innovation (only works locally).
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Nonlinear IRFs: discussion

• This is useful for interpretation:
◦ Innovations ũi1; Ṽ1 generalize recursive identification (Cholesky) in linear system with macrostate ordered first (with conditional independence replacing orthogonality).

• Link to nonlinear persistence:
IRFi t(”b; Z1; Z0) = E

"
tY
s=2

ȷ
`
uis ; ”i ;s−1; Zt ; Zt−1

´˛̨̨̨˛”i1 = ”b; Z1; Z0

#
×
“
g ′i (”

b)
”−1
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IRFs with respect to macro shocks

(a) Male earnings (expansion) (b) Family income (expansion)
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IRFs with respect to macro shocks

(a) Male earnings (steady state) (b) Family income (steady state)
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IRFs with respect to macro shocks

(a) Male earnings (recession) (b) Family income (recession)
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IRFs with respect to micro shocks

(a) Male earnings (rank rule) (b) Family income (rank rule)
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IRFs with respect to micro shocks

(a) Male earnings (unit rule) (b) Family income (unit rule)
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Cost of business cycles: role of macro nonlinearities

• Very rough macro/micro risk calculation: find CV such that
E

"
HX
t=1

˛tU
“
(1− CV) exp(”i t)”

˛̨̨̨
˛no shocks; ”i0; Z0

#
= E

"
HX
t=1

˛tU
“
exp(”i t)

”˛̨̨̨˛”i0; Z0

#
;

for some utility function U(·).

• Part of the literature focuses on curvature in preferences.
◦ E.g., log-utility with exponential income process =⇒ very little risk.
◦ Typically need high risk-aversion to obtain even moderate costs of business cycles.

• Another channel: interaction between marginal utility and macro nonlinearities:
◦ Key: presence of quadratic (Zt ; Zt−1)-term in Q” .
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Risk calculation: approximations

• For given ”i0; Z0, write ”i t = ”t(ui ;V) with ui , V history of micro/macro shocks.
• Curvature is determined by Ũ(c) = U(exp(c)).

◦ CRRA: U(C) = (C1−“ − 1)=(1− “) =⇒ Ũ ′(c) = e(1−“)c and Ũ ′′(c) = (1− “)e(1−“)c .
• Compensating variation for macro risk:

CV ≈ −

PH
t=1 ˛

tPt−1
‘=0

»
Ũ ′′(”t(0; 0))

“
@”t(0;0)
@Vt−‘

”2
+ Ũ ′(”t(0; 0))

„
@
2
”t(0;0)

@V
2
t−‘

«–
PH

t=1 ˛
t Ũ ′(”t(0; 0))

:

• Similar approximation holds for micro risk.
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• For given ”i0; Z0, write ”i t = ”t(ui ;V) with ui , V history of micro/macro shocks.
• Curvature is determined by Ũ(c) = U(exp(c)).

◦ Log-utility: U(C) = ln(C) =⇒ Ũ ′(c) = 1 and Ũ ′′(c) = 0.
• Compensating variation for macro risk (log-utility):

CV ≈ −

PH
t=1 ˛

tPt−1
‘=0

„
@
2
”t(0;0)

@V
2
t−‘

«
PH

t=1 ˛
t
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Macro risk

(a) Male earnings (Q” linear in Zt ) (b) Family income (Q” linear in Zt )
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Macro risk

(a) Male earnings (Q” quadratic in Zt ) (b) Family income (Q” quadratic in Zt )
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Micro risk

(a) Male earnings (Q” linear in Zt ) (b) Family income (Q” linear in Zt )
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Conclusion

• Building nonlinear reduced forms for heterogeneous agents models with macro shocks:
◦ Useful to assess their fit and micro implications.
◦ It can help uncover empirical patterns to target in structural approaches.
◦ Key goal is to confront the micro data without forcing linearity upon them.
◦ We study identification, estimation and inference tools for this purpose.

• Interpretation of impulse responses and shocks is more delicate in a macro/micro setup:
◦ Ideally, guide choice of scale of shocks to achieve comparability across individuals.
◦ Dynamics can be summarized by measures of nonlinear persistence.

• Nonlinearities in the micro impact of macro shocks matter for welfare calculations:
◦ Information about these impacts accumulates slowly (time series rate).
◦ One avenue we are exploring: model/estimation uncertainty in the risk calculations.

Thank you!
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