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Abstract

We analyze a model for N different measurements of a persistent latent time series when

measurement errors are mean-reverting, which implies a common trend among measure-

ments. We study the consequences of overdifferencing, finding potentially large biases in

maximum likelihood estimators of the dynamics parameters and reductions in the preci-

sion of smoothed estimates of the latent variable, especially for multiperiod objects such as

quinquennial growth rates. We also develop an R2 measure of common trend observability

that determines the severity of misspecification. Finally, we apply our framework to US

quarterly data on GDE and GDI, obtaining an improved aggregate output measure.
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1 Introduction

Aggregate measurements, particularly those of output, are a key input to research economists

and policy makers. Assessing the state of business cycles, making predictions of future economic

activity, and detecting long-run trends in national income are some of their most popular uses.

These measurements are typically regarded as noisy estimates of the quantities of interest, but

accounting for the role of measurement error in applications is a difficult task. An important

exception arises when more than one measurement of the same quantity is available. This

makes it possible to combine the different measurements to produce a better estimate, ideally

assigning higher weights to more precise ones.

In the US, the Bureau of Economic Analysis (BEA) reports both the expenditure-based

Gross Domestic Expenditure (GDE) measure of output and its income-based Gross Domestic

Income (GDI) counterpart. If the sources and methods of the statistical office were perfect,

then the two would be identical. In practice, however, they differ (see Landefeld, Seskin, and

Fraumeni (2008) for a review). The frequent, and at times noticeable, discrepancy between

them (officially known as statistical discrepancy) has been recently the subject of active debate

in academic and policy circles,1 and various proposals for improved measures of economic

activity have been discussed (see, e.g. Nalewaik (2010), Nalewaik (2011), Greenaway-McGrevy

(2011), and Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2016)).2 The GDPplus measure

of Aruoba et al. (2016), for example, is currently released on a monthly schedule by the Federal

Reserve Bank of Philadelphia.

In this paper, we propose improved output measures under the assumption that alternative

measurements in levels do not systematically diverge from each other over the long run. While

economic activity, like several other macro aggregates, arguably displays a strong stochastic

trend, one would expect statistical discrepancies to mean-revert. In that case, measurements in

levels would share a common trend. Somewhat surprisingly, though, the standard practice is to

rely on models that do not impose this common trend, working instead with the growth rates of

measurements. To cite a few references, Smith et al. (1998), Nalewaik (2010), Nalewaik (2011),

Greenaway-McGrevy (2011) and Aruoba et al. (2016) all apply signal extraction techniques to

a model of the first differences of log GDP. So does the literature on GDP data revisions, e.g.,

Aruoba (2008), Jacobs and van Norden (2011) and ?.
1See Grimm (2007) for a detailed methodological insight.
2Stone, Champernowne, and Meade (1942) is the first known reference to the signal-extraction framework of

our paper. Early literature is surveyed in Weale (1992). See also Smith, Weale, and Satchell (1998).
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In this respect, our main goal is to explore the implications of neglecting a common trend in

levels for both parameter estimators and smoothed estimates of latent variables. Specifically,

we follow Smith et al. (1998) in analyzing a model in which N different measurements yt of an

unobserved quantity xt are available, so that

yt = xt1N×1 + vt,

with vt denoting measurement errors in levels and 1N×1 a vector of N ones. In contrast to the

literature, though, we model xt as I(1) – i.e., ∆xt is stationary and strictly invertible – but vt

as I(0). The discrepancies between measurements yit − y jt = vit − v jt are thus cointegrating

relationships, reflecting that mean reversion keeps alternative measurements from diverging.

As a result, the measurement errors in first differences, ∆vt, are overdifferenced.

Figure 1 shows US data counterparts to yt and yit − y jt:
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FIGURE 1. GDE and GDI. We use November 2020’s release of BEA national accounts estimates spanning
1952Q1-2019Q4; (a) 100×logs of GDE and GDI subtracting their 1952Q1 values, i.e., percentage (log)
growth in GDE and GDI accumulated since 1952Q1; (b) Differences between 100×log of GDE and
100×log of GDI.

The parameters that describe the dynamics of xt are typically of interest in themselves, as

they inform important dimensions of business cycles and enter signal-extraction calculations.

For that reason, we begin by studying the effects of ignoring cointegration among the elements

of yt on estimation procedures. We focus on Gaussian maximum likelihood estimators (MLE)

in a simple parametric setup in which the model for xt is correctly specified but that of vt is

not because of the neglected common trend. Our main finding is that even if xt and vt are
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stochastically independent, estimators of the autocorrelation parameters of xt will be affected

by misspecification in the dynamics of vt, displaying potentially large biases and increased

asymptotic variances. At the same time, we show that if the statistical model assumes Gaussian

autoregressive dynamics for both ∆xt and ∆vt, then the estimators of their unconditional means

and variances will be asymptotically unaffected. Consequently, the impact of misspecification

will be confined to the autocorrelation structure of ∆xt.

Moreover, we prove that the extent to which inferences will be impaired is governed by (i)

the severity of overdifferencing in measurement errors, and (ii) the overall signal-to-noise ratio.

The more severely overdifferenced the elements of ∆vt are (i.e., the further away from unit root

processes those measurement errors are), the stronger the dynamic misspecification resulting

from the omitted common trend will be. In addition, a low degree of signal observability, which

we quantify by means of an R2 measure of the relative contribution of xt and vt to the variation

in observables, amplifies the role of incorrect modeling assumptions on vt. In the limiting case

of R2 = 1, xt is observable and misspecification in vt inconsequential.3 Our results therefore

complement those in Chang, Miller, and Park (2009), who derive the asymptotic distribution

of the Gaussian MLE in a dynamic factor model with a single common trend. While Chang

et al. (2009) study the case of unknown loadings under correct specification, we focus on the

case of known loadings (equal to 1N×1) but subject to the dynamic misspecification induced by

overdifferencing.4

Prediction, filtering and smoothing of xt given data on yt – signal extraction, for short –

constitute the other main focus of our paper. Given that the uncertainty of signal extraction

calculations does not vanish in large T samples, unlike that of parameter estimators, we study

their behavior at the pseudo-true parameter values, i.e., at the probability limits of ML esti-

mators. Thus, we leverage on our estimation results to establish the suboptimality as a signal

extraction technique of the Kalman-filter-based methods that neglect the common trend.

We find that the effect of ignoring the common trend is substantially different when signal

extraction targets a short-run object and a long-run one. In particular, confidence sets for a

long-run object such as an average of ∆xt over a relatively large time span are highly sensitive

to even modest amounts of overdifferencing in ∆vt. This result is important because long-run

3In unreported simulation experiments, we explore the possibility that biases in parameter estimators may be
reduced by means of a flexible model of the serial dependence structure of measurement errors in first differences.
Specifically, we model ∆vt as a set of independent univariate AR(p) models with p large. Our analysis suggests that
bias reduction is thus possible, but at the expense of significant precision loss. Large-p, large-T double-asymptotics
in this context appear to be an interesting (but challenging) avenue for future research.

4Another difference with Chang et al. (2009) is that their baseline analysis assumes a random walk common
trend while ours assumes it to be ARI(1,1).
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objects are relevant to empirical questions about slowly evolving trends in macro variables.

One example originates in the recurrent debate about growth deceleration in industrialized

economies (e.g., Gordon (2016)). Another instance is the secular stagnation hypothesis, which

implies a downward trend in interest rates (e.g., Hansen (1939) and Summers (2015)). Sim-

ilarly, the apparent secular decline in labor shares (e.g., Kaldor (1957), Blanchard (1997) and

Karabarbounis and Neiman (2014)) provides another case in point.

On the empirical side, we fit our proposed common trend model to US data on GDE

and GDI. Through standard Kalman smoothing calculations, we obtain an improved measure

of economic activity, which we compare to other existing measures in the literature. We

then use our improved measure to assess the robustness of a variety of empirical facts on

economic activity, involving both short- and long-run objects. Our main findings are the

following: (1) point estimates of the serial correlation structure of economic activity appear

robust to common trend assumptions, (2) the same seems to be true of point estimates of the

quarterly average rate of growth in GDP, but (3) our common trend model gives rise to lower

signal extraction uncertainty about economic activity than its competitors. Our third finding

is conceptually important because point estimates of latent variables cannot be justified by an

appeal to consistency – uncertainty about latent variables remains high regardless of the sample

size, implying that such estimates must be accompanied by a measure of their precision. This

is particularly important from an empirical point of view because the “putative” precision of

estimates of economic activity which do not impose a common trend is so low that no sharp

conclusion can be drawn about trends in growth from them. In contrast, our common-trend

model provides noticeably more precise inference about such long-run objects.5

Of course, whether or not there is a common trend is an empirical question in its own right.

The evidence that the statistical discrepancy between US GDE and GDI, although persistent, is

mean-reverting is suggestive but not conclusive.6 Yet, the fact that, absent a common trend, the

probability of observing large deviations between different measurements tends to one, lends

strong support to our framework in the context of aggregate measurement problems.

The rest of the paper is organized as follows. In section 2 we present the basic setup.

Section 3 discusses the properties of maximum likelihood estimators while section 4 is devoted

to filtering. We report the results of our empirical analysis in section 5. Finally, section 6

concludes. Additional results are relegated to appendix A and the supplemental material.
5Interestingly, Chang et al. (2009) show that there is cointegration between the true series xt and the smoothed

estimates that exploit the correctly specified model, which reinforces the case for imposing the common trend in
order to obtain a filter capable of closely tracking the level of the signal.

6This is most probably related to the low power attributed to cointegration tests.
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Notation. We use ωt0:t1
to denote the sequence

{
ωt

}t1
t=t0

. If ωt is a d1 × d2 array for all t, and

if it raises no confusion, we also use ωt0:t1
to denote the d1(t1 − t0 + 1) × d2 array obtained by

vertical concatenation of the terms of
{
ωt

}t1
t=t0

. Analogously, ψ1:N denotes the column vector

(ψ1, . . . , ψN)′. We write ET
[
ωt

]
= T−1 ∑T

t=1ωt for the sample average of ω1:T, E
[
ωt

]
for its

population counterpart, “
p
−→” for convergence in probability and “=⇒” for weak convergence.

2 Model

In our setup, the statistical office collects N (log) measurements yt of an unobserved scalar

(log) quantity xt. Let vt be the vector of (multiplicative) measurement errors so that, in first

differences,

∆yt = ∆xt1N×1 + ∆vt, t = 1, . . . ,T.(1)

For a sample ∆y1:T, the data generating process is given by the probability distribution P.

Assumption 1. P satisfies the following:

(A) The time series ∆x0:T, v1,0:T, . . . , vN,0:T are cross-sectionally independent;

(B) ∆xt is a Gaussian AR(1) process: For some values µ0, ρ0 ∈ (−1, 1), σ0 > 0,

∆x0 ∼ N(µ0, σ
2
0),

∆xt|∆x0:(t−1) ∼ N
(
µ0 + ρ0(∆xt−1 − µ0), (1 − ρ2

0)σ2
0

)
, t = 1, . . . ,T;

(C) vit is a Gaussian AR(1) process: For some values ρi ∈ (−1, 1], σi > 0,

vi0 ∼ N
(
0,

(1 + ρi)
2

σ2
i

)
,

vit|vi,0:(t−1) ∼ N
(
ρivi,t−1,

(1 + ρi)
2

σ2
i

)
, t = 1, . . . ,T, i = 1, . . . ,N.

Assumptions (A) and (B) are made in essentially every paper in the literature (e.g., Smith

et al. (1998), Greenaway-McGrevy (2011), Aruoba et al. (2016), and Almuzara, Amengual, and

Sentana (2019)). Independence between ∆xt and measurement errors rules out cyclical patterns

in the statistical discrepancy. Although potentially of substantive interest, introducing depen-

dence between ∆xt and vt or across the vit’s complicates identification of the spectra of latent
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variables. Similarly, AR(1) dynamics for ∆xt is generally agreed to be a reasonable benchmark

for economic activity data. Normality is unnecessary for most of our analysis, but since our

focus is on the modeling of measurement errors and the role of dynamic misspecification, we

adopt it for ease of exposition.

According to Assumption (B), we can regard ∆x0:T as a segment from a strictly stationary

process ∆x
−∞:∞,

∆xt = (1 − ρ0)µ0 + ρ0∆xt−1 +

√
1 − ρ2

0σ0ε0t,

with ε0t
iid
∼ N(0, 1). Our parameterization of the process for the signal ensures that E

[
∆xt

]
=

µ0 and Var
(
∆xt

)
= σ2

0, which do not depend on ρ0, thereby separating these unconditional

moments from the parameters governing the dynamics of ∆xt. Thus, we can summarize the

serial dependence structure of the growth rate by its spectral density

f0(λ) = σ2
0

(1 − ρ2
0)

(1 − ρ0eiλ)(1 − ρ0e−iλ)
= σ2

0

 ∞∑
ℓ=−∞

ρ|ℓ|0 eiℓλ

 .
Assumption (C) implies ∆vit is overdifferenced, the severity of overdifferencing increasing

as ρi moves away from unity. In fact, ∆vit is a strictly noninvertible ARMA(1,1) process, except

in the limiting case ρi = 1, when ∆vit becomes white noise. We can view ∆vi,0:T as a segment

from a strictly stationary process ∆vi,−∞:∞,

∆vit = ρi∆vi,t−1 +

√
(1 + ρi)

2
σi∆εit,

with εit
iid
∼ N(0, 1). We have E

[
∆vit

]
= 0 and Var

(
∆vit

)
= σ2

i , and the spectral density of ∆vit is

fi(λ) = σ2
i

(1 + ρi)(1 − eiλ)(1 − e−iλ)

2(1 − ρie
iλ)(1 − ρie

−iλ)
,

which vanishes at frequency λ = 0 if ρi , 1 – an unequivocal symptom of overdifferencing.

When ρi , 1 for all i, the spectral density matrix of ∆yt at λ = 0 is f0(0)1N×N. Therefore, it

is singular with finite positive diagonal, implying the cointegration (of rank N − 1) of yt. Thus,

yt is driven by a single common trend, xt, while the statistical discrepancies di j,t = yit − y jt are

cointegrating relationships.7

7There are N(N − 1)/2 statistical discrepancies but only N − 1 of them are linearly independent. For example, all
the discrepancies with respect to a fixed measurement j form a basis of the cointegration space. An error-correction
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Henceforth, we assume the econometrician formulates a statistical model P =
{
Pθ : θ ∈ Θ

}
where θ = (ϑ′, ψ′1:N)′ with ϑ = (µ, ρ, σ)′ and Θ = Θx ×Θv, Θx ⊂ R × (−1, 1) × R>0 and Θv ⊂ R

N
>0.

The distribution Pθ is such that

(a) The time series ∆x0:T,∆v1,0:T, . . . ,∆vN,0:T are cross-sectionally independent;

(b) ∆x0 ∼ N(µ, σ2) and ∆xt|∆x0:(t−1) ∼ N
(
µ + ρ(∆xt−1 − µ), (1 − ρ2)σ2

)
, t = 1, . . . ,T;

(c) ∆vit
iid
∼ N(0, ψ2

i ), i = 1, . . . ,N.

From (a) and (b) it follows that the econometrician has correctly specified the model for∆x0:T

conditional on ϑ0 = (µ0, ρ0, σ0)′ ∈ Θx, an assumption we maintain in what follows. Similarly,

σ1:N ∈ Θv. In contrast, the model for the observed data ∆y1:T is misspecified unless ρi = 1 for all

i. In effect, (c) captures the idea that the econometrician neglects the common trend in yt caused

by the mean reversion of measurement errors because she assumes that vt =
∑t
τ=1 ∆vτ + v0 is a

set of N independent random walks.

To ease the comparisons, the statistical model is also parameterized so that Eθ
[
∆xt

]
= µ and

Varθ
(
∆xt

)
= σ2, where the subscript θ indicates moments of the assumed distribution, so that

the implied spectral density of ∆xt becomes

fϑ(λ) = σ2 (1 − ρ2)

(1 − ρeiλ)(1 − ρe−iλ)
,

which coincides with f0 at ϑ = ϑ0. For measurement errors, Eθ
[
∆vit

]
= 0 and Varθ

(
∆vit

)
= ψ2

i .

Importantly, the assumed spectral density matrix of ∆yt at λ = 0 is fϑ(0)1N×N + diag(ψ2
1:N),

which is nonsingular.

Identification. A statistical model that makes use of assumption (a) attains nonparametric

identification of the spectra of latent variables. Given a spectral density matrix f∆y for the

observables, equation (1) and assumption (a) deliver

f∆y(λ) = f∆x(λ)1N×N + diag
[

f∆v(λ)
]
,

where f∆x is the spectral density of ∆xt, f∆v is the N-dimensional vector of spectral densities of

∆v1t, . . . ,∆vNt and 1N×N is a square matrix with N2 ones. Therefore, the i j-th entry of f∆y(λ),

for any i , j, equals f∆x(λ), which subtracted from the diagonal of f∆y(λ) yields f∆v(λ). In

representation can be derived along the lines of Chang et al. (2009).

8



fact, assumption (a) imposes overidentifying restrictions on f∆y for N > 2, as it implies that the

off-diagonal elements of f∆y must be equal. Consequently, the joint probability distribution of

the time series {∆xt,∆vt} is identified under Gaussianity, provided one adds some restrictions

on the unconditional means of the latent variables, which are necessary because there are

N + 1 unconditional means but we only observe N measurements. Assumption 1, for example,

imposes that the expectation of all measurement errors are zero, which is enough to identify

µ0 = E
[
∆xt

]
for any N ≥ 1.

2.1 Observability of the signal: a key parameter

Measures of the relative contributions of signal and noises to variation in observables are often

important for understanding the quality of estimation and filtering in unobserved components

models. To develop such a measure, we use the idea of minimal sufficient statistic for dynamic

factor models in Fiorentini and Sentana (2019). With L the lag operator and Fi(.) the autocovari-

ance generating function of ∆vit,
8 the Generalized Least Squares (GLS) estimator of ∆xt based

on the past, present and future of ∆yt is

∆y∗t =
∑N

i=1 F−1
i (L)∆yit∑N

i=1 F−1
i (L)

= ∆xt +

∑N
i=1 F−1

i (L)∆vit∑N
i=1 F−1

i (L)
.

Fiorentini and Sentana (2019) show that ∆y∗t , a one-dimensional linear filter applied to ∆yt,

contains all relevant information about ∆xt in ∆yt, in the sense that the application of the

Kalman filter to ∆y∗t delivers the same predictions for ∆xt as the Kalman filter applied to ∆yt.

We denote the resulting error by ∆v∗t , whose spectral density is given by f
∗
(λ) =

(∑N
i=1 f−1

i (λ)
)−1

.

Fiorentini and Sentana (2019) also derive the frequency-domain analogue to ∆y∗t , namely

∞∑
t=−∞

∆y∗te
iλt = ∆y∗(λ) = ∆x(λ) +

∑N
i=1 f−1

i (λ)∆vi(λ)∑N
i=1 f−1

i (λ)
= ∆x(λ) + ∆v∗(λ).

In this context, we take

R2(λ) =
f0(λ)

f0(λ) + f
∗
(λ)

,

i.e. the fraction of the variance of ∆y∗(λ) explained by ∆x(λ), as an indicator of the degree of

observability of the signal at frequency λ. This measure is useful to gauge the frequencies at

8That is F j(e
iλ) = f j(λ).
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which the effect of misspecification in measurement errors is more severe for inferences about

∆xt. In addition, we can obtain an overall measure of observability of the signal by simply

replacing spectral densities by their integrals over [0, 2π], which yields

R2 =
σ2

0

σ2
0 + σ

2
∗

,

since σ2
0 =

∫ 2π
0 f0(λ) dλ and σ2

∗
=

∫ 2π
0 f

∗
(λ) dλ. Interestingly, this is the usual measure of

observability (or signal strength) in the error-in-variable model

∑N
i=1 σ

−2
i ∆yit∑N

i=1 σ
−2
i

= ∆xt +

∑N
i=1 σ

−2
i ∆vit∑N

i=1 σ
−2
i

,

and coincides with R2(λ) at each frequency λ when ∆vit is white noise for each i. Thus, a "more

observable" signal is indicated by R2(λ) and R2 closer to unity.9 In particular, when one of the

measurement error variances is zero, R2(λ) = 1 and R2 = 1.

3 Estimation

Let θ̂ be the Gaussian MLE of θ. We give asymptotics for θ̂ in the following setup:

Assumption 2. As T→∞, the parameters µ0, ρ0, σ0, ρ1:N, σ1:N are held constant.

Remark. An alternative local embedding in which parameters drift in a 1/
√

T-neighborhood

of a fixed value can be used with little change as long as the autoregressive roots ρ0:N are

bounded away from unity. To keep the exposition focused, though, we do not allow for local-

to-unity asymptotics for the persistence of measurement errors. A setup in which ρi = 1 − ϱi/T

with ϱi held fixed would capture a situation in which the researcher is uncertain about imposing

cointegration because the probability that a unit-root test on the differences yit − y jt rejects the

null remains bounded between 0 and 1 as T → ∞ (see, e.g., Cavanagh (1985), Chan and Wei

(1987) and Phillips (1987)). Still, our analysis suggests that the difference between unit roots and

near unit roots is very relevant for constructing inference for long-run objects (see supplemental

appendix SM.C) but not so for estimation.

9As an alternative, one could use the signal-noise ratios q(λ) = f0(λ)/ f
∗
(λ) and q = σ2

0/σ
2
∗
. Nevertheless, R2-type

measures are easier to interpret because they are bounded between 0 and 1.

10



Our main estimation result, whose proof appears in appendix A, is as follows:

Theorem 1. Let {µ̃, σ̃, ψ̃1:N} be the maximum likelihood estimator from the static model (i.e., the model

that assumes (a), (b) with ρ = 0, and (c)). Similarly, let {µ̂, ρ̂, σ̂, ψ̂1:N} be the maximum likelihood

estimator from the dynamic model P. Then, under assumptions 1 and 2,

√

T


µ̂ − µ̃

σ̂ − σ̃

ψ̂1:N − ψ̃1:N

 = op(1) .

Further, for some B and V,

√

T(ρ̂ − (ρ0 + B)) =⇒ N(0,V).

Therefore, µ̂
p
−→ µ0, σ̂

p
−→ σ0 and ψ̂i

p
−→ σi for all i. The estimators of the unconditional mean

and variance parameters of the latent variables obtained from the static and dynamic models

are asymptotically normal at the usual rate,10 and, perhaps more surprisingly, they have the

same asymptotic covariance matrix. The consequences of neglecting the common trend are,

thus, confined to the autocorrelation structure of ∆xt. A univariate example in supplemental

appendix SM.A provides further intuition.

Theorem 1 has many implications. First, one can estimate the model parameters without loss

of asymptotic precision in two steps: maximizing the static model log-likelihood for {µ, σ, ψ1:N}

first, and then the dynamic log-likelihood for ρ after plugging in {µ̃, σ̃, ψ̃1:N}.
11 Second, the

unconditional R2 measure of signal observability is consistently estimated even if the model is

misspecified, unlike its frequency-domain counterpart. Third, the estimator of ρ0 will typically

be inconsistent, and at least when normality holds, it will display higher asymptotic variance

than the estimator from the model that correctly imposes the common trend in levels.

We can implicitly characterize the inconsistency term B by means of the spectral condition

∫ 2π

0
cos(λ)

 fϑ̄(λ)

fϑ̄(λ) + σ2
∗

2 (
fϑ̄(λ) − f0(λ) + σ2

∗
− f̃ (λ)

)
dλ = 0,(2)

10If the loadings on the common trend xt, which we assume are 1N×1, had to be estimated instead, the results in
Chang et al. (2009) imply that a linear combination of them would converge to a nonstandard distribution at the
rate T along a direction determined by the cointegration space.

11In fact, our proof suggests that the asymptotic equivalence between static and dynamic MLEs would survive
in the presence of forms of dynamic misspecification other than the one we consider in this paper, and for more
general dynamic models when the latent variables follow autoregressive processes but not when they have moving
average components.
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where ϑ̄ = (µ0, ρ0 + B, σ0), σ2
∗

is defined in section 2, and f̃ (λ) =
∑N

i=1 σ
−4
i fi(λ)/[

∑N
i=1 σ

−2
i ]2 is the

spectrum of
∑N

i=1 σ
−2
i ∆vit/

∑N
i=1 σ

−2
i , i.e., the true error in the GLS minimal sufficient statistic for

∆xt computed under the misspecified model.

In Appendix A we derive a time-domain counterpart to (2), namely:

Cov
(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
= Covθ̄

(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
.(3)

This means that B adjusts to match two types of covariances between the smoothed values

of ∆xt−1 and ∆xt obtained with the misspecified model: the covariance taken under the data

generating process P and the covariance computed using the misspecified model Pθ̄ evaluated

at the pseudo-true value θ̄.

When either ρi = 1 for all i or σi = 0 for at least one i, we have that f̃ (λ) = σ2
∗

for all λ. As

a consequence, one can set fϑ̄ = f0, which implies a consistent estimator of ρ0 with B = 0. By

continuity, the inconsistency term B will be small when the extent of misspecification is small

(ρi’s all close to unity) or when the observability of the signal is high (R2 close to unity). In

contrast, noticeable biases may arise when one moves away from those limiting cases, as we

illustrate in the next section.

AR(p) dynamics. Our approach can be easily extended to a model in which ∆xt is an AR(p)

process with unconditional mean µ0, unconditional variance σ2
0, and AR coefficients ϱ0,1:p and

the estimated model correctly specifies the dynamics of ∆xt. Under assumptions 1-(A) and (C),

the asymptotic equivalence between µ̂, σ̂, ψ̂1:N and µ̃, σ̃, ψ̃1:N of theorem 1 remains, and so does

asymptotic normality of
√

T(ϱ̂1:p − ϱ̄1:p) where ϱ̂1:p is the MLE of ϱ1:p and ϱ̄1:p is the pseudo-true

value. These are characterized by a set of spectral conditions analogous to (2), i.e.,

∫ 2π

0
cos(ℓλ)

 fϑ̄(λ)

fϑ̄(λ) + σ2
∗

2 (
fϑ̄(λ) − f0(λ) + σ2

∗
− f̃ (λ)

)
dλ = 0, ℓ = 1, . . . , p,

and a set of time-domain conditions analogous to (3),

Cov
(
Eθ̄

[
∆xt−ℓ

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
= Covθ̄

(
Eθ̄

[
∆xt−ℓ

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
for ℓ = 1, . . . , p. Some numerical experiments (available upon request) suggest that in this case

the roots ϕ̄1:p that satisfy
∏p
ℓ=1(1 − ϕ̄ℓz) = (1 − ϱ̄1z − · · · − ϱ̄pzp) are subject to downward bias

relative to the true roots ϕ0,1:p that satisfy
∏p
ℓ=1(1 − ϕ0,ℓz) = (1 − ϱ0,1z − · · · − ϱ0,pzp).
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3.1 Numerical and simulation evidence

We complement our foregoing discussion of estimation with some insights from numerical and

simulation calculations. To begin with, we compute expression (2) by numerical quadrature to

obtain the inconsistency in the estimation of ρ0 as a function of the observability of the signal

and the severity of overdifferencing. We set µ0 = 3, ρ0 = 0.5 and σ0 = 3.25.12 We also take N = 2

and let R2 (with σ1 = σ2) and ρ1 = ρ2 vary over the interval (0, 1).
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FIGURE 2. Numerical computation of asymptotic bias B in the estimation of ρ0 for different extents of
overdifferencing ρ1 = ρ2 and signal observability R2. The true value is ρ0 = 0.5. The integral in (2) is
approximated by numerical quadrature with a fine grid on the interval [0, 2π].

We display the results for this exchangeable design in figure 2. They clearly confirm our

intuition about the roles of ρi and R2 in determining B, with the inconsistency growing quickly

as R2 decreases below 0.5 even for moderate amounts of overdifferencing. Importantly, we

always find that B ≤ 0 under the form of misspecification we analyze in this paper. The

rationale is as follows. Equation (2) shows that ρ0 + B is set to match a weighted average of

the difference between fϑ̄ and f0 + σ
2
∗
− f̃ , which is depressed at lower frequencies compared

to the true spectrum f0 by the effect of overdifferencing. To see this, note that since fϑ is an

AR(1) spectrum, lower values of fϑ at low frequencies with σ fixed at σ0 require decreasing ρ. In
12Since they represent an affine transformation of the data, the parameters µ0 and σ0 (given R2) are irrelevant

for both B and the finite-sample behavior of the ML estimators. Nevertheless, we choose the values of these
parameters to match estimates from US quarterly data on economic activity for the period 1952Q1-2019Q4, so that
our simulated data resembles the actual dataset in our empirical application. Other sample periods usually lead to
different estimates of µ0 and σ0 but leave ρ0 and measures of overdifferencing and signal observability practically
unchanged.
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particular, at frequency λ = 0, we have fϑ(0) = (1+ ρ)/(1− ρ) which decreases with ρ and, more

generally, ∂ fϑ(λ)
∂ρ = −2 fϑ(λ)

[
ρ

1−ρ2 +
ρ−cos(λ)

1+ρ2
−2ρ cos(λ)

]
, which is negative for low values of λ. Hence,

plimT→∞ ρ̂ = ρ0 + B < ρ0.13

We next present simulation evidence on the finite-sample properties of the following three

estimators of θ: (i) maximum likelihood for the model in first differences (i.e., θ̂), (ii) the two-

step procedure suggested by theorem 1, and (iii) maximum likelihood for the model in levels.

The results are summarized in tables 1, 2 and 3. They show that the approximation in theorem

1 works very well in realistic sample sizes and setups. The correlation between θ̂ and the two-

step estimator is virtually one, as one would expect from their asymptotic equivalence, and the

inconsistency in ρ̂ is close to the values for B obtained from equation (2). Not surprisingly, the

model in levels outperforms its competitors, although not by much for unconditional moments.

The results for a second symmetric design in which ρ1 = ρ2 = 0 and for an asymmetric design,

which we present in appendix SM.B, display the same patterns.

Remark. The behavior of B as ρi approaches unity for fixed R2 can be obtained from figure 2.

Our calculations suggest that
√

T|B| = o(1) when ρi = 1 − ϱi/T for all i, and that
√

T|B| = O(1)

would require the alternative embedding ρi = 1 − ϱi/
√

T instead. Such an embedding would

allow us to pretest the existence of a bias in the estimation of ρ0. Although we do not formally

prove these statements, they convey a sense of the relevance of estimation biases in applications.

Note that if∆xt were observable, the standard error of ρ̂ for a sample of seventy years of quarterly

data (T = 280) would be roughly
√

(1 − ρ2
0)/T ≈ 0.05. If, for example, the data were generated

from the common-trend model with parameters (ρi,R
2) = (0.35, 0.85), (ρi,R

2) = (0.92, 0.50) or

(ρi,R
2) = (0.98, 0.30), then the estimation of the model in differences would yield a bias of

size comparable to the standard error. These values seem plausible for a large number of

applications. In fact, when R2 is 0.5 or below, values of ρi which are only slightly below unity

can already cause severe downward bias in the estimation of ρ0.

13Another way to look at the fact that B ≤ 0 is that over-differencing makes fi be close to zero for frequencies λ
which are near zero ( fi is real and continuous), and so

f̃ (λ) =
∑N

i=1 σ
−4
i fi(λ)[∑N

i=1 σ
−2
i

]2 <

∑N
i=1 σ

−4
i[∑N

i=1 σ
−2
i

]2 = σ
2
∗

for small λ. As a result, f0(λ) +
[

f̃ (λ) − σ2
∗

]
< f0(λ) for small λ. A pseudo-true value ρ0 + B lower than ρ0 is needed

to match fϑ̄(·) with f0(·) +
[

f̃ (·) − σ2
∗

]
. We thank a referee for providing this alternative argument.
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TABLE 1. Monte Carlo simulation for ρ1 = ρ2 = 0.85 and R2 = 0.30.

True Differences Two-step Levels

µ0 mean 3 3.001 3.001 3.002
stderr 0.344 0.344 0.345

corr 1 0.998
ρ0 mean 0.5 0.289 0.292 0.481

stderr 0.204 0.195 0.178
corr 0.942 0.451

σ0 mean 3.25 3.233 3.194 3.204
stderr 0.558 0.588 0.598

corr 0.96 0.825
ρi mean 0.85 0.831

stderr 0.072
σi mean 7.021 6.995 7.01 6.996

stderr 0.385 0.391 0.384

NOTES. Number of samples is nMC = 2, 000, sample size is T = 280, and parameter values are given under column
"True". Rows "mean" and "stderr" show mean and standard deviation across simulations of each estimator; "corr"
shows the correlation with MLE in differences of the other two estimators. The bias in ρ̂ is to be compared with the
theoretical inconsistency B ≈ −0.23 computed from equation (2) as indicated in the text.

4 Signal extraction

In general, neglecting the common trend should negatively impact filtered and smoothed

estimates of the latent variables. We can identify two channels through which this happens:

one important for short-run calculations, and the other for long-run calculations. We begin

with the short-run channel, i.e., the downward bias in ρ̂.

Consider the filtered estimate of ∆xt,

∆x̂t = Eθ̂
[
∆xt

∣∣∣∆y1:T
]
.

As is well-known, the filtering error ∆x̂t − ∆xt is Op(1) for large T. This is in contrast to

the estimation error θ̂ − θ̄, with θ̄ = (µ0, ρ0 + B, σ0, σ
′

1:N)′, which is op(1). Therefore, we can

obtain a good approximation to the behavior of ∆x̂t −∆xt if we simply abstract from estimation

uncertainty and focus on filtered estimates at pseudo-true values,

∆x̄t = Eθ̄
[
∆xt

∣∣∣∆y1:T
]
= µ0 +

T∑
τ=1

ϕ̄τ,T(∆yτ − µ01N×1),

where the conditional expectation is affine because of the normality assumptions in (b)-(c).

On the other hand, the ideal filter from a mean-square error perspective is the conditional
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TABLE 2. Monte Carlo simulation for ρ1 = ρ2 = 0.85 and R2 = 0.50.

True Differences Two-step Levels

µ0 mean 3 3.002 3.002 3.002
stderr 0.341 0.341 0.341

corr 1 0.999
ρ0 mean 0.5 0.41 0.408 0.488

stderr 0.111 0.11 0.105
corr 0.986 0.876

σ0 mean 3.25 3.229 3.22 3.221
stderr 0.322 0.321 0.326

corr 0.979 0.954
ρi mean 0.85 0.822

stderr 0.089
σi mean 4.596 4.583 4.589 4.581

stderr 0.266 0.272 0.268

NOTES. Number of samples is nMC = 2, 000, sample size is T = 280, and parameter values are given under column
"True". Rows "mean" and "stderr" show mean and standard deviation across simulations of each estimator; "corr"
shows the correlation with MLE in differences of the other two estimators. The bias in ρ̂ is to be compared with the
theoretical inconsistency B ≈ −0.08 computed from equation (2) as indicated in the text.

TABLE 3. Monte Carlo simulation for ρ1 = ρ2 = 0.85 and R2 = 0.85.

True Differences Two-step Levels

µ0 mean 3 3.001 3.002 3.001
stderr 0.342 0.343 0.343

corr 0.999 0.999
ρ0 mean 0.5 0.478 0.475 0.49

stderr 0.062 0.062 0.065
corr 0.998 0.934

σ0 mean 3.25 3.231 3.23 3.238
stderr 0.196 0.196 0.205

corr 0.999 0.934
ρi mean 0.85 0.781

stderr 0.24
σi mean 1.931 1.925 1.926 1.914

stderr 0.148 0.165 0.252

NOTES. Number of samples is nMC = 2, 000, sample size is T = 280, and parameter values are given under column
"True". Rows "mean" and "stderr" show mean and standard deviation across simulations of each estimator; "corr"
shows the correlation with MLE in differences of the other two estimators. The bias in ρ̂ is to be compared with the
theoretical inconsistency B ≈ −0.01 computed from equation (2) as indicated in the text.
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mean under the correctly specified model P,14

∆x∗t = E
[
∆xt

∣∣∣∆y1:T
]
= µ0 +

T∑
τ=1

ϕ∗τ,T(∆yτ − µ01N×1).

The discrepancy between the weights ϕ̄1:T,T and ϕ∗1:T,T is of interest because we can decompose

∆x̄t − ∆xt into two orthogonal components: (i) the optimal filtering error ∆x∗t − ∆xt, whose

variance cannot be reduced any further in the class of measurable functions of ∆y1:T with

bounded second moments, and (ii) the difference between the optimal and suboptimal filters

∆x̄t − ∆x∗t .

To illustrate the consequences for signal extraction of neglecting the common trend in levels,

figure 3 provides a comparison of the weights for our baseline calibration when overdifferencing

is not so severe (ρ1 = ρ2 = 0.85) and the degree of observability varies from low (R2 = 0.30)

to high (R2 = 0.85). We do so for the two leading signal extraction exercises encountered in

practice: the computation of ∆x̄t and ∆x∗t for values of t in the middle of the sample, and for

t = T (i.e., "nowcasting").

In both cases, it is clear that the filters from misspecified models tend to assign lower weights

to nearby observations relative to what is optimal, the difference being larger the lower R2 is.

For the most part, this is explained by the fact that the suboptimal filters assume the signal

to be less persistent than it actually is, as B is negative and grows in absolute value as R2

decreases. Intuitively, the negative value of B resulting from neglecting the common trend

leads the econometrician to underestimate the information content of current data.

Naturally, when overdifferencing is more severe, so is its impact on signal extraction. To

support this claim, appendix SM.B shows an analogous weight comparison in a design with

ρ1 = ρ2 = 0. For a given R2, more severe overdifferencing means a larger downward bias in

the estimation of the persistence of the signal, which implies even more depressed weights for

informative nearby observations.

4.1 Long-run objects

By a long-run object we mean a weighted average X =
∑T

t=1ωt∆xt, where the weightsω1:T satisfy

∥ω1:T∥ =

√∑T
t=1ω

2
t = O

(
1/
√

T
)
. They are suitable to quantify trends in aggregate quantities

and therefore regularly show up in empirical studies of growth. Compared to smoothed

estimates of short-run objects, neglecting the common trend in the level measurements affects

14The data in levels enable the use of y0 in E
[
∆xt

∣∣∣∆y1:T, y0
]
, which dominates ∆x∗t = E

[
∆xt

∣∣∣∆y1:T
]

unless ρ0 = 0.
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(a) ρ1 = ρ2 = 0.85 and R2 = 0.30 (middle)
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(b) ρ1 = ρ2 = 0.85 and R2 = 0.30 (end)
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(c) ρ1 = ρ2 = 0.85 and R2 = 0.50 (middle)
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(d) ρ1 = ρ2 = 0.85 and R2 = 0.50 (end)
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(e) ρ1 = ρ2 = 0.85 and R2 = 0.85 (middle)
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(f) ρ1 = ρ2 = 0.85 and R2 = 0.85 (end)

FIGURE 3. Weights of Kalman smoother. Horizontal axis is τ − t; vertical axis is first entry of ϕ̄τ,T (red)
and ϕ∗τ,T (blue). Panels (a), (c) and (e) display weights for t ≈ T/2 (middle), and panels (b), (d) and (f) for
t = T (end). The filters are computed using µ0 = 3, ρ0 = 0.50, σ0 = 3.25. Wrong filter uses ρ0 + B as AR
root with B computed from (2).
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inferences about long-run objects though a different channel, namely, by inflating measures of

their uncertainty, such as standard errors or confidence intervals. This can be appreciated in the

comparison offered in figure 6 in the empirical analysis . We provide a theoretical discussion of

this phenomenon in appendix SM.C.

4.2 Simulation evidence (continued)

We compare the finite-sample behavior of the filters discussed above using the same simulation

designs as in subsection 3.1 (see tables 1-3). In each simulated sample, we first obtain maximum

likelihood estimates of both the misspecified and correctly specified models, and then we

compute the corresponding smoothed estimates of ∆xt for t ≈ T/2 and t = T. We present the

results for those designs that set ρ1 = ρ2 = 0.85 in tables 4 and 5. Appendix SM.B reports

additional results setting ρ1 = ρ2 = 0 and ρ1 = 0, ρ2 = 0.95.

As a general rule, T = 280 seems large enough for ∆x̄t to provide a good approximation to

∆x̂t. The same is true for ∆x∗t and the filter from the correctly specified model evaluated at the

maximum likelihood estimates, which we call ∆x̂∗t . The main differences in precision appear

between ∆x̄t and ∆x∗t rather than between the filters evaluated at the ML estimates and their

limiting values.

The effect of neglecting the common trend when measurement errors are highly persistent

seems modest in our simulations, with an increase of at most 7% in root MSE relative to the

optimal filter in low-R2 designs. However, more severe overdifferencing combined with a

low R2 leads to a substantial reduction in the precision of filters, as appendix SM.B illustrates.

Therefore, researchers should be particularly concerned about their modeling assumptions on

measurement error when the R2 measure we propose in the paper is 0.5 or less, something we

already saw in the estimation results.

It is interesting to note that the nowcasting estimate ∆x̂T is less affected by misspecification

than the smoothed estimate for an observation in the middle of the sample, as one would expect

given that the sample is relatively less informative (and therefore receives smaller weights) when

filtering ∆xT.

5 An improved aggregate output measure

In this section, we apply our framework to the US quarterly GDE and GDI data displayed

in figure 1 with the objective of constructing a new improved measure of economic activity.
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TABLE 4. Monte Carlo simulation for ρ1 = ρ2 = 0.85 and t ≈ T/2.

∆x̂t ∆x̄t ∆x̂∗t ∆x∗t

R2 = 0.30 RMSE 3.15 3.18 3.13 3.12
increase 0.04 0.04 0.02

R2 = 0.50 RMSE 3.05 3.05 3.04 3.03
increase 0.02 0.01 0.02

R2 = 0.85 RMSE 2.88 2.88 2.87 2.88
increase 0.01 0 0.01

NOTES. Number of samples is nMC = 2, 000 and sample size is T = 280. Columns "∆x̂t" and "∆x̄t" refer to the wrong
filter at the ML estimates and pseudo true values, respectively. Columns "∆x̂∗t" and "∆x∗t" refer to the right filter at
the ML estimates and true values, respectively. Root MSE and increase in MSE as a fraction of the MSE of ∆x∗t are
indicated for each filter and R2.

TABLE 5. Monte Carlo simulation for ρ1 = ρ2 = 0.85 and t = T.

∆x̂t ∆x̄t ∆x̂∗t ∆x∗t

R2 = 0.30 RMSE 3.12 3.14 3.1 3.08
increase 0.04 0.04 0.02

R2 = 0.50 RMSE 3.02 3.01 3.01 3
increase 0.02 0.01 0.02

R2 = 0.85 RMSE 2.87 2.87 2.87 2.87
increase 0.01 0 0.01

NOTES. Number of samples is nMC = 2, 000 and sample size is T = 280. Columns "∆x̂t" and "∆x̄t" refer to the wrong
filter at the ML estimates and pseudo true values, respectively. Columns "∆x̂∗t" and "∆x∗t" refer to the right filter at
the ML estimates and true values, respectively. Root MSE and increase in MSE as a fraction of the MSE of ∆x∗t are
indicated for each filter and R2.

Specifically, we use the November 2020’s release of BEA national accounts estimates for the

period 1952Q1-2019Q4 and define y1t = 400 × ln(GDEt) and y2t = 400 × ln(GDIt) so that their

first differences ∆y1t and ∆y2t indicate the annualized (geometric) growth rates. The statistical

discrepancy, which we compute as d12,t = (y1t − y2t)/4 = 100 × ln(GDEt/GDIt), is then roughly

the percentage by which GDE exceeds GDI in levels.15 Remarkably, the levels of GDE and GDI

have remained within 3% of each other for about 70 years, lending strong support to our claim

that the two measurements are cointegrated.

Table 6 reports maximum likelihood estimates for both the parameters of the common trend

model P and the statistical model P we discussed in section 3. As expected from Theorem 1,

there is no significant disagreement between different estimates of the unconditional moment

15We begin the sample in 1952Q1 to coincide with the Treasury-Fed accord. As is well known, this accord
established in its modern terms the separation between monetary and fiscal policies, inaugurating a period of more
stable behavior of economic aggregates in comparison to the immediate aftermath of World War II. In turn, we end
our sample at 2019Q4 to avoid the use of the yet provisional (and highly variable) data from 2020. Thus, all the data
in our sample has been subject to at least one annual revision by the BEA.
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TABLE 6. Estimates of model parameters for US data.

Differences Two-step Levels

µ0 estimate 2.994 2.997 2.989
stderr (0.338) (0.204) (0.338)

ρ0 estimate 0.488 0.485 0.499
stderr (0.057) (0.048) (0.057)

σ0 estimate 3.237 3.227 3.223
stderr (0.186) (0.151) (0.184)

ρ1 estimate -0.097
stderr (0.272)

σ1 estimate 1.49 1.387 1.314
stderr (0.115) (0.149) (0.130)

ρ2 estimate 0.941
stderr (0.021)

σ2 estimate 1.113 1.239 1.338
stderr (0.137) (0.162) (0.113)

NOTES. The sample period is 1952Q1-2019Q4 (T = 271). Rows "estimate" and "stderr" show point estimate and
standard error for each estimator. A subindex 1 in ρi and σi refers to GDE while a subindex 2 refers to GDI. The
point estimate for signal observability R2 is 0.922 and a 95% confidence interval for R2 is [0.901, 0.943].

parameters {µ0, σ0, σ1, σ2}. The estimates of our R2 measure of common trend observability are

high at about 0.92, with a small confidence interval around them. Estimates for ρ0, in turn, are all

near 0.5, with a seemingly small downward bias in the estimators from the models that neglect

the common trend. These patterns are in line with the theoretical and simulation analysis in

section 3.16 The estimates of the autoregressive coefficient ρ2 implies that the time series of

GDI’s measurement error in levels, v2t, seems stationary but highly persistent. In contrast, we

cannot reject that the GDE’s measurement error in levels, v1t, is white noise. This difference

in the persistence of measurement errors may be the result of the fact that GDE and GDI are

computed from different sources and with different methods, therefore relying on inputs which

themselves differ in their dynamics. Next, we discuss some of the implications of these results.

Our first consideration is about the serial dependence of the statistical discrepancy, d12,t.

Figure 4, in particular, shows that our assumption of AR(1) measurement errors in levels does a

good job at replicating the autocorrelations of this variable. Although the statistical discrepancy

is highly persistent because the GDI’s measurement error in level dominates it, it is also evident

that the serial dependence steadily declines, being already fairly low after 12 quarters. We

also note that, if anything, the autocorrelations of the statistical discrepancy tend to decrease

faster in the data than in our model, although the difference is small relative to the sampling

16When we restrict our sample to the one used by Aruoba et al. (2016), we obtain estimates of {µ0, ρ0, σ0, σ1, σ2}

comparable to theirs. For the subsample 1960Q1-2011Q4 that they use, the variance of the signal is slightly lower,
and so is the R2 measure of common trend observability.
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uncertainty.

FIGURE 4. Autocorrelations of the statistical discrepancy. The solid blue line contains the autocorre-
lations implied by model P at point estimates. Shaded area is a pointwise 95% confidence interval for
each lag.

A related observation is that the model in first differences leads to an implausibly high

probability of long-run divergence between GDE and GDI in levels. To get a sense for it,

d12,T|d12,0 ∼ N(d12,0, 0.9 × T) with the estimates of the dynamically misspecified model at hand.

A quick calculation indicates that the probability that today we would observe a divergence

between GDE and GDI higher than 3% is 0.99 if the two aggregate output measurements were

not cointegrated.

The second consideration refers to the impact of neglecting the common trend in levels

on inferences about parameters and latent variables. Because ∆xt is highly observable, our

theoretical results in sections 3 and 4 lead us to expect no significant divergence between the

models in differences and in levels with regards to maximum likelihood estimates and smoothed

estimates of what we have called short-run objects. We have already confirmed the similarity

of the estimates in table 6. In turn, figure 5 confirms our results for the smoothed estimates of

∆xt, as one can hardly distinguish one model from the other in terms of the conditional mean

and variance of ∆xt given∆y1:T.17 Still, pointwise confidence intervals are shorter for the model

that imposes the common trend: their average length is 3.5% (in annualized growth) for the

model in differences against 3% for the model in levels.

17In fact, the smoothed series obtained by assuming that GDE and GDI are not cointegrated lies within the
credible sets obtained under the assumption that the model that imposes cointegration is correct. Therefore, the
difference between the two smoothed series, which is largest in the period preceding the fall of Lehman Brothers
but does not show any business cycle variation, is not significant.
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(a) Model in differences (b) Model in levels

FIGURE 5. Smoothed estimates of ∆xt (short-run object). The solid green line represents the smoothed
estimates and the shaded area represents 95% confidence intervals (pointwise for each t).

However, the fact that GDE’s measurement error is essentially white noise does affect

inferences about long-run objects. Figure 6 illustrates this feature with the 8-year moving

averages of ∆xt. We take overlapping 8-year intervals for the purposes of averaging out the

typical business-cycle periodicity.18 As expected from our results in appendix SM.C, there is

substantially less uncertainty for the model that exploits the common trend. Specifically, the

average length of the confidence intervals is 1% for the model in differences and 0.2% for the

model in levels. This reduced uncertainty is particularly important for assessing changes in

aggregate trends, as such changes are typically small.

(a) Model in differences (b) Model in levels

FIGURE 6. Smoothed estimates of h−1 ∑h
ℓ=1 ∆xt−ℓ+1 (h = 32, long-run object). Solid green line represents

the smoothed estimates and shaded area represents 99% confidence intervals (pointwise for each t).

18In this respect, we follow Müller and Watson (2008) but similar patterns arise when we use 5- or 10-year
intervals instead.
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Finally, note that our trend estimates track far more closely 8-year moving averages of GDE

growth than those of GDI, which is again explained by the low persistence of v1t. Therefore,

we may conclude that empirical patterns about economic activity previously obtained from

low-frequency averages of GDE are robust to the presence of measurement error in view of the

small degree of filter uncertainty implied by our model.

6 Conclusion

From a practical point of view, the first lesson we can extract from our study regarding aggregate

output measurement is that the need to account for a common trend in levels hinges critically on

how important measurement errors are in driving observable variation. For quarterly or annual

data, measurement errors might be small; for monthly and, particularly, for high-frequency data

the opposite should be expected. Although no direct measure of economic activity exists at the

monthly frequency, nowcasting exercises at high frequencies typically contain larger amounts

of measurement errors as they feed on noisier, more preliminary, input data. The nature of

what is being measured matters too as different economic concepts have different associated

degrees of noisiness. For example, it is not the same to look at the quarterly growth rate of GDP

than to look at its quinquennial counterpart. As a practical prescription, we recommend the

estimation of the R2 measure of trend observability we develop in the paper. We also strongly

urge researchers to always impose a common trend, especially when the R2 turns out low – an

R2 below 0.5 should be cause of concern.

Moreover, our econometric analysis yields several insights which are of theoretical interest.

First, we prove that estimators of unconditional first and second moments under the misspeci-

fied model are asymptotically equivalent to static model estimators. Second, we show that the

form of misspecification studied in this paper causes a downward bias in the estimated persis-

tence of the signal. And third, we highlight that the misspecified model will tend to overstate

uncertainty of smoothed estimates of latent variables, and dramatically so for long-run objects.

Although we derive these results in a simplified parametric model, our methods of analysis

allow easy extension to more general setups. In particular, our analysis may be adapted to

dynamic factor models with nontrivial cross-sectional dimensions – models in which the usual

data preprocessing may likely lead to overdifferencing.

On the empirical side, we construct a new improved measure of US aggregate output

from GDE and GDI data. Unlike existing signal-extraction measures, ours allows GDE and
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GDI’s measurement errors in levels to mean-revert, a property that fits well with the data.

Still, given that signal observability is high in this application, our estimates of the parameters

of the dynamics of output growth are not affected much by ignoring the stationarity of the

measurement errors. Nevertheless, our common trend approach delivers noticeable reductions

in the implied uncertainty of smoothed estimates of true output growth. Specifically, measured

in terms of root mean square errors, the reductions are around 15% for short-run objects and

80% for long-run ones. One important practical issue that we have neglected in this paper

is the regular updating of the GDE and GDI measures by the BEA. In Almuzara, Amengual,

Fiorentini, and Sentana (2022), we are currently exploring this relevant research avenue within

the common trends framework of this paper.

Appendix A Proof of theorem 1 and derivation of equations (2) and

(3)

Although for the sake of brevity, we do not discuss frequency-domain ML estimation (see,

e.g., Fiorentini, Galesi, and Sentana (2018)) or Bayesian estimation (e.g., Durbin and Koopman

(2012)), before presenting the proof, it is useful to describe the way estimates are produced. We

can obtain numerically equivalent Gaussian MLEs of θ, θ̂, by means of two algorithms. The

first one exploits the Kalman filter to recursively compute the one-period ahead conditional

means and variances of observables appearing in the log-likelihood function. The second is the

EM algorithm, which, for some initial θ̂(0), updates parameter estimates by iterating over

θ̂(s) = argmax
θ∈Θ

E
θ̂(s−1)

 T∑
t=1

ln pϑ
(
∆xt|∆x1:(t−1)

)
+

T∑
t=1

N∑
i=1

ln pψi

(
∆vit

)∣∣∣∣∣∣∣y1:T

 ,
ln pϑ

(
∆xt|∆x1:(t−1)

)
= −

1
2

ln (
2π(1 − ρ2)σ2

)
+

(∆xt − (1 − ρ)µ − ρ∆xt−1)2

(1 − ρ2)σ2

 ,
ln pψi

(
∆vit

)
= −

1
2

ln(2πψ2
i ) +
∆v2

it

ψ2
i

 .
The EM algorithm alternates between smoothing the so-called complete-data likelihood using

the current value θ̂(s−1) for expectation calculations (the E-step), and maximizing the resulting

smoothed function to yield a new value θ̂(s) (M-step). See Dempster, Laird, and Rubin (1977),

Ruud (1991), and Watson and Engle (1983). If the algorithm converges, we have θ̂ = lims→∞ θ̂
(s).

This EM algorithm is particularly relevant because our proof relies heavily on a generalization
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of Louis (1982) score formula, which we call EM principle, formalized in Almuzara et al. (2019,

th. 1). Consider the functions

gµ(θ) =
√

T
(
ET

[
∆xt − ρ∆xt−1

]
1 − ρ

− µ

)
,

gρ(θ) =
√

TET

[
(∆xt−1 − µ)(∆xt − µ) − ρ(∆xt−1 − µ)2

]
,(A.1)

gσ(θ) =
√

T

ET

[
((∆xt − µ) − ρ(∆xt−1 − µ))2

]
1 − ρ2 − σ2

 ,
gψi

(θ) =
√

T
(
ET

[
∆v2

it

]
− ψ2

i

)
, i = 1, . . . ,N.

These are proportional to the scaled average scores of the complete-data log-likelihood for

the misspecified model. Maximum likelihood estimates θ̂ are characterized by the first-order

necessary conditions

E
θ̂

[
gµ(θ̂)

∣∣∣∆y1:T

]
= E

θ̂

[
gρ(θ̂)

∣∣∣∆y1:T

]
= E

θ̂

[
gσ(θ̂)

∣∣∣∆y1:T

]
= E

θ̂

[
gψi

(θ̂)
∣∣∣∆y1:T

]
= 0.

Define the auxiliary functions

g̃µ(θ) =
√

T
(
ET

[
∆xt

]
− µ

)
,

g̃σ(θ) =
√

T
(
ET

[
(∆xt − µ)2

]
− σ2

)
,

and note that the maximum likelihood estimates for the static model θ̃ (i.e., the restricted

maximum likelihood estimates subject to ρ = 0) satisfy

E
θ̃

[
g̃µ(θ̃)

∣∣∣∆y1:T

]
= E

θ̃

[
g̃σ(θ̃)

∣∣∣∆y1:T

]
= E

θ̃

[
gψi

(θ̃)
∣∣∣∆y1:T

]
= 0.(A.2)

The first lemma will allow us to replace gµ and gσ by the much simpler g̃µ and g̃σ.

Lemma 1. Let θ̂ be the maximum likelihood estimator for the misspecified model. Under assumptions

1 and 2,

E
θ̂

[
gµ(θ̂)

∣∣∣∆y1:T

]
= E

θ̂

[
g̃µ(θ̂)

∣∣∣∆y1:T

]
+ op(1) and E

θ̂

[
gσ(θ̂)

∣∣∣∆y1:T

]
= E

θ̂

[
g̃σ(θ̂)

∣∣∣∆y1:T

]
+ op(1) .

Proof. For any θ ∈ Θ,

gµ(θ) − g̃µ(θ) =
ρ(∆xT − ∆x0)

(1 − ρ)
√

T
.
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One can then show that Eθ
[
∆x0

∣∣∣∆y1:T
]
= Op(1) and Eθ

[
∆xT

∣∣∣∆y1:T
]
= Op(1), which leads to

Eθ

[
gµ(θ) − g̃µ(θ)

∣∣∣∆y1:T

]
= Op

(
1/
√

T
)
.

In particular, this implies that E
θ̂

[
gµ(θ̂) − g̃µ(θ̂)

∣∣∣∆y1:T

]
= op(1).

Turning to the score function with respect to σ, for any θ ∈ Θ,

gσ(θ) +
2ρ

1 − ρ2 gρ(θ) − g̃σ(θ) =
ρ2((∆xT − µ)2

− (∆x0 − µ)2)

(1 − ρ2)
√

T
.

Since Eθ
[
(∆x0)2

∣∣∣∆y1:T

]
= Op(1) and Eθ

[
(∆xT)2

∣∣∣∆y1:T

]
= Op(1),

Eθ

gσ(θ) +
2ρ

1 − ρ2 gρ(θ) − g̃σ(θ)

∣∣∣∣∣∣∆y1:T

 = Op

(
1/
√

T
)
.

And since E
θ̂

[
gρ(θ̂)

∣∣∣∆y1:T

]
= 0, we finally get E

θ̂

[
gσ(θ̂) − g̃σ(θ̂)

∣∣∣∆y1:T

]
= op(1). ■

Remark. A subtlety in the previous proof is that order-in-probability statements refer to P

while expectations refer to Pθ. For the sake of brevity, we omit the proof that this difference is

inconsequential.

Let θρ=0 be the parameter vector θ in which we set ρ = 0. In an abuse of notation, we will

also occasionally identify θρ=0 with the subvector that excludes the ρ = 0 component – note

that, trivially, θ̃ and θ̃ρ=0 represent the same parameter value. For the proof of lemma 2, the

following remark will be useful:

Remark. Sample spaces of ∆y1:T, ∆x0:T, and ∆v1:T are Y = R
NT, X = R

T+1, and V = R
NT.

Probability distributions P and Pθ, θ ∈ Θ, may be taken to be measures on the Borel sets of

X × V with probability statements about ∆y1:T interpreted by means of the inverse image of

the mapping in (1). The measure P and the model P are then dominated by Lebesgue measure

λ on the Borel sets of X × V. Consequently, densities exist by the Radon-Nikodym theorem.

In contrast, conditional distributions of ∆x0:T and ∆v1:T given ∆y1:T implied by P and P are

dominated by the σ-finite measure λ∆y1:T
on the Borel sets of the hyperplane defined by (1) for

fixed ∆y1:T, rather than by P. Therefore, conditional densities exist with respect to λ∆y1:T
in that

case too.
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Lemma 2. Under assumptions 1 and 2,

√

T
(
E
θ̂

[
ET

[
∆xt

]∣∣∣∆y1:T
]
− E

θ̂ρ=0

[
ET

[
∆xt

]∣∣∣∆y1:T
])
= op(1) ,

√

T
(
E
θ̂

[
ET

[
∆x2

t

]∣∣∣∣∆y1:T

]
− E

θ̂ρ=0

[
ET

[
∆x2

t

]∣∣∣∣∆y1:T

])
= op(1) ,

√

T
(
E
θ̂

[
ET

[
∆v2

it

]∣∣∣∣∆y1:T

]
− E

θ̂ρ=0

[
ET

[
∆v2

it

]∣∣∣∣∆y1:T

])
= op(1) , i = 1, . . . ,N.

Proof. Let x denote the latent variables {∆x0:T, v1:N,1:T} and y the observables ∆y1:T. Under the

restriction ρ = 0, the model for x has density

pη(x) = b exp
[
T · (η′S(x) − a(η))

]
with respect to measure λ. Similarly, the density of x given y is an exponential family with

density

pη(x|y) = b exp
[
T · (η′S(x) − a(η|y))

]
with respect to measure λy. Measures λ and λy are defined in the remark above, b is a constant,

η = η(µ, σ, ψ1:N) is a function of the original parameters, a(·) and a(·|y) are functions of η, and the

sufficient statistics are S(x) = ET

[
(∆xt,∆x2

t ,∆v2
1t, . . . ,∆v2

Nt)
′
]
.

Define Ŝ = E
θ̂

[S(x)] and note that if x is such that S(x) = Ŝ, then the densities pη(x) and

pη(x|y) are maximized at η̂ = η(µ̂, σ̂, ψ̂1:N).

In addition,

Ŝ =
∂a(η̂)
∂η

=
∂a(η̂|y)
∂η

= E
θ̂ρ=0,

[
S(x)

∣∣∣y]
where this follows from well-known properties of exponential families (Jørgensen and Labouriau,

2012, Th. 1.17 and 1.18). Since E
θ̂

[
S(x)

∣∣∣y] = Ŝ + op

(
1/
√

T
)

by virtue of lemma 1, the current

lemma immediately follows. ■

The rest of the argument for the asymptotic equivalence between θ̂ρ=0 and θ̃ρ=0 is standard.

Specifically, if G collects the static model estimating equations (A.2) (suitably scaled by T), and

θ̄ρ=0 denotes the (common) probability limit of the two estimators, a Taylor expansion gives

op(1) = G(θ̂ρ=0) − G(θ̃ρ=0) =
[
H(θ̄ρ=0) + op(1)

]
×

√

T(θ̂ρ=0 − θ̃ρ=0),
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where H(θ̄ρ=0) is a fixed nonsingular matrix, which in turn implies
√

T(θ̂ρ=0 − θ̃ρ=0) = op(1).

We now turn to characterizing the pseudo-true value for the estimator ρ̂. From (A.1) and (a

small variation of) lemma 2, we obtain

ET

[
E
θ̂

[
(∆xt−1 − µ̂)(∆xt − µ̂)

∣∣∣∆y1:T
]]
− ρ̂σ̂2 = op(1) .

Let ρ̄ = ρ0 + B be the probability limit of ρ̂. Our discussion of equivalence between dynamic-

model and static-model maximum likelihood estimators has already established that µ̂
p
−→ µ0,

σ̂
p
−→ σ0 and ψ̂i

p
−→ σi. Thus, ρ̂σ̂2 p

−→ ρ̄σ2
0. Also let θ̄ be the probability limit of θ̂.

For any θ ∈ Θ, we have

Eθ
[
(∆xt−1 − µ)(∆xt − µ)

∣∣∣∆y1:T
]
= Covθ

(
∆xt−1,∆xt

∣∣∣∆y1:T
)

+ (Eθ
[
∆xt−1

∣∣∣∆y1:T
]
− µ)(Eθ

[
∆xt−1

∣∣∣∆y1:T
]
− µ)

= Eθ
[
Covθ

(
∆xt−1,∆xt

∣∣∣∆y1:T
)]

+ (Eθ
[
∆xt−1

∣∣∣∆y1:T
]
− µ)(Eθ

[
∆xt−1

∣∣∣∆y1:T
]
− µ)

= Covθ
(
∆xt−1,∆xt

)
− Covθ

(
Eθ

[
∆xt−1

∣∣∣∆y1:T
]
, Eθ

[
∆xt

∣∣∣∆y1:T
])

+ (Eθ
[
∆xt−1

∣∣∣∆y1:T
]
− µ)(Eθ

[
∆xt−1

∣∣∣∆y1:T
]
− µ)

The second line follows from properties of the normal distribution, while the third follows from

a well-known identity for covariances. Now, Covθ
(
∆xt−1,∆xt

)
= ρσ2 which leads to

op(1) = ET

[
E
θ̂

[
(∆xt−1 − µ̂)(∆xt − µ̂)

∣∣∣∆y1:T
]]
− ρ̂σ̂2

=
1
T

T∑
t=1

(E
θ̂

[
∆xt−1

∣∣∣∆y1:T
]
− µ̂)(E

θ̂

[
∆xt−1

∣∣∣∆y1:T
]
− µ̂)

−
1
T

T∑
t=1

Cov
θ̂

(
E
θ̂

[
∆xt−1

∣∣∣∆y1:T
]
, E
θ̂

[
∆xt

∣∣∣∆y1:T
])

Let T→∞,

1
T

T∑
t=1

(E
θ̂

[
∆xt−1

∣∣∣∆y1:T
]
− µ̂)(E

θ̂

[
∆xt−1

∣∣∣∆y1:T
]
− µ̂)

p
−→ Cov

(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
,

1
T

T∑
t=1

Cov
θ̂

(
E
θ̂

[
∆xt−1

∣∣∣∆y1:T
]
, E
θ̂

[
∆xt

∣∣∣∆y1:T
]) p
−→ Covθ̄

(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
.

We take limits by replacing sample averages by expectations, θ̂ by θ̄, and smoothing with
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respect to ∆y1:T by smoothing with respect to ∆y
−∞:∞.Smoothing with respect to ∆y1:∞ and

∆y
−∞:∞ give the same result (the proof of which we omit), but the second turns out to be more

convenient.

Both limits are covariances between the smoothed values of ∆xt−1 and ∆xt obtained using

the misspecified model, but in the first case the covariance is taken under the data generating

process P while in the second the covariance is computed using the misspecified model Pθ̄
evaluated at the pseudo-true value θ̄. In summary, ρ̄ is characterized by the equation

Cov
(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
= Covθ̄

(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
.

In order to establish the spectral condition (2) we note that the Fourier transform ofEθ̄
[
∆xt

∣∣∣∆y
−∞:∞

]
is the Wiener-Kolmogorov filter,

∆x
∞

(λ) =
fϑ̄(λ)

fϑ̄(λ) + σ2
∗

∑N
i=1 σ

−2
i ∆yi(λ)∑N

i=1 σ
−2
i

where ∆yi(λ) is the Fourier transform of the time series ∆yi,−∞:∞. The filter ∆x
∞

has spectrum

 fϑ̄(λ)

fϑ̄(λ) + σ2
∗

2

( f0(λ) + f̃ (λ))

under the data generating process P and spectrum

 fϑ̄(λ)

fϑ̄(λ) + σ2
∗

2

( fϑ̄(λ) + σ2
∗
)

under the misspecified model Pθ̄. Hence, by Fourier inversion,

Cov
(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
=

∫ 2π

0
cos(λ)

 fϑ̄(λ)

fϑ̄(λ) + σ2
∗

2

( f0(λ) + f̃ (λ)) dλ,

Covθ̄
(
Eθ̄

[
∆xt−1

∣∣∣∆y
−∞:∞

]
, Eθ̄

[
∆xt

∣∣∣∆y
−∞:∞

])
=

∫ 2π

0
cos(λ)

 fϑ̄(λ)

fϑ̄(λ) + σ2
∗

2

( fϑ̄(λ) + σ2
∗
) dλ,

whence equation (2) follows.
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