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Abstract

I propose a new approach to the formulation of long-run restrictions that consists of

constraining the local-to-zero impulse-response function of a multivariate time series—a

transformation of the impulse-response function that focuses on low-frequency variation. I

argue that researchers should restrict a range of low enough frequencies to capture an em-

pirically motivated notion of the long run. I establish conditions under which that approach

delivers identification of impulse-response functions and by embedding it into a dynamic

model (such as a vector autoregression or a dynamic factor model) I show how to conduct

inference. An application to factor-neutral technology shocks is discussed.
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1 Introduction

A long-run restriction is one that imposes that the cumulative effect of certain shock on certain

variable is “eventually” zero. Economic research features many instances of such restrictions:

assuming that factor-neutral technical change is the single driver of long-term movements in

labor productivity is standard in business cycle analyses (see, e.g., Galí (1999) and Christiano

et al. (2004)); the long-run neutrality of monetary policy, demand, and exchange rate shocks is

frequent as well (see, e.g., Peersman and Smets (2003)). With an econometric perspective, the

question is to what extent can long-run restrictions help identify, estimate, and test economic

models given that, in the datasets often available to researchers, information about the long run

is admittedly scarce.

In effect, interpreting “eventually” to mean “at an arbitrarily far horizon” deprives long-

run restrictions of empirical content. In the data, one never sees the impulse and the response

separated by eternity—and one never wishes so. Instead, the application usually indicates a

more appealing empirically-grounded notion of long run. For example, in studying firm deci-

sions, it is common to interpret the long run as a period long enough to allow the adjustment

of all productive factors (and this may vary across industries); in business cycle analysis the

long run represents variation taking place beyond the typical periodicity of the business cycle

(beyond, say, an 8-year period to evoke the criterion adopted by Müller and Watson (2008)).

In this paper, I propose a novel approach to the formulation of long-run restrictions which

enables researchers to clearly express what the long run means for their empirical analysis. I

introduce what I call empirically relevant long-run restrictions. These are restrictions on the

local-to-zero impulse-response function (IRF) of a multivariate time series—a transformation

of the dynamic responses of variables to shocks which focuses on low-frequency components.

Put simply, each variable is the sum of components that vary with different periodicities and

an empirically relevant long-run restriction limits the contribution of a shock to the variance

of the components the periodicities of which are too long—how long depends on the notion of

long run that suits the application. The approach is introduced in detail in section 2.

Early methods for long-run restrictions can be traced back to Shapiro and Watson (1988),

Blanchard and Quah (1989) and King et al. (1991). In these papers, a long-run restriction sets to

zero the sum of all dynamic responses of a variable to a shock. This is equivalent to setting to

zero the contribution of the shock to the long-run variance of the variable. Since the long-run

variance may be regarded as the variance of a component with an infinitely long period, my

approach generalizes the early ones. Doing so is important because long but not infinitely long
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periods do unfold their full cyclical patterns in realistic datasets (e.g., 70 years of GDP data do

contain information about 8-year cycles). Consequently, one expects to be able to learn about

such components by looking at statistics that capture genuine long-run variation. What is

more, inference based on appropriately chosen statistics is presumably more transparent about

the sources of sampling uncertainty.

In this context, my paper makes three contributions. The first is to study the identification

content of empirically relevant long-run restrictions. The fundamental identification problem

of macroeconometrics is to recover the IRF—the dynamic multipliers measuring the response

of variables to shocks—from the autocorrelation structure of the data. Since such a recovery is

not possible without restrictions, a large array of identification strategies has been developed.1

An important class considers restrictions on a strictly invertible time series, i.e., a time series

for which shocks are linear combinations of the past and the present of the series. The theory

of identification I develop belongs in that class.2 Within the class, the problem usually reduces

to the identification of an n× n orthogonal matrix (n the number of shocks and variables) that

transforms one-step ahead prediction errors into shocks. A key insight of my analysis is that,

because the object to be identified is finite-dimensional but the empirically relevant long-run

restrictions form a continuum, overidentification will generally occur. Owing to that, my long-

run restrictions are generally testable. One may take two separate subsets of restrictions and,

in principle, identify two seperate values for the IRF. Differences between the two values are

evidence against the long-run restrictions. This is the subject of section 3.

The second contribution of my paper is to provide a framework that exploits empirically

relevant long-run restrictions to conduct inference about the IRF. I focus on the construction

of an approximate likelihood function for the parameters of interest because such a function

serves as input of both frequentist and Bayesian calculations. The construction is as follows.

I take a time series of length T and form two sets of statistics: on the one hand, a set of q

projection coefficients of the time series onto cosine functions with long periods—the long-run

statistics; on the other, a set of T − q projection residuals—the short-run statistics. Periods

of the cosine functions are selected to generate a grid of cyclical components in the domain

of the empirically relevant notion of the long run. Long-run statistics then capture the trend

behavior of the series while short-run statistics describe variation beyond trend. Just as in the

traditional approach, both types of statistics are needed to learn about an IRF identified by

1Stock and Watson (2016, sec. 4) contains a good summary.
2See Plagborg-Møller (2019) and Plagborg-Møller and Wolf (2019) for work on noninvertible processes.
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long-run restrictions.3 Moreover, with T large and q fixed, long-run and short-run statistics are

approximately independent and normally distributed (in a suitable sense).

I propose to model the distribution of long-run statistics in the spirit of the low-frequency

econometrics literature.4 In particular, I restrict the distribution to a convenient parametric class

that accommodates more general dependence patterns than the standard I(0) and I(1) dynam-

ics. For short-run statistics, I consider a vector autoregression (VAR) with normally distributed

errors thinking of it as an approximation to a more general model. Once the likelihood function

has been constructed, different inference approaches become available. Using EM ideas, fur-

thermore, it is not hard to extend the framework to latent variables models (such as dynamic

factor models). Section 4 develops the details.

The third contribution of my paper is empirical. I revisit a classical application of long-run

restrictions to factor-neutral technology shocks. Two relevant quantities for the assessment of

models of business cycle fluctuations are the response of hours to technology shocks and the

contribution of technology shocks to the variance of labor productivity. Early empirical work

focused on bivariate models of labor productivity and hours worked for which the effect of

non-technology shocks on labor productivity sums to zero in the long run. Using my approach

and US data, I impose a long-run restriction that excludes non-technology shocks from labor

productivity, understanding long run as variation occurring beyond an 8-year period. Doing so

leads to a negative (and significant) response of hours to technology shocks and a modest (but

not negligible) fraction of the variation in productivity accounted for by technology shocks.

However, estimates are sensitive to the notion of long run: if restrictions are imposed only

on components with periodicities well above 8 years, the response is estimated positive and

the fraction high. This is a clear sign of the overidentifying restrictions being at fault, what

I confirm by constructing and implementing a test. Part of the empirical contribution of my

paper is, then, to give a reevaluation of the controversy in the evidence reported by Galí (1999)

and by Christiano et al. (2004).5 The empirical analysis is fully developed in section 5.

My paper relates to various different literatures. First, Rubio-Ramírez et al. (2010) gave

a theory of global identification for finite-order VAR models. In contrast, my identification

theory considers more general dynamic models. The motivation is that finite-order VARs have

too strong implications for low-frequency variation and are, therefore, not very appealing in

3Long-run statistics generalize the long-run variance matrix.
4Müller and Watson (2017) provide an excellent survey.
5Evidence from bivariate models of the sort that is discussed here are not common in the recent literature. See

Ramey (2016, sec. 5) for an up-to-date summary.
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the study of long-run restrictions. Second, Francis et al. (2014) proposed an approach to long-

run restrictions based on maximizing the contribution of a shock to the conditional variance

of a variable at a finite horizon. My approach, per contra, uses the local-to-zero IRF. I argue

that the local-to-zero IRF is a more convenient device and avoids some caveats that come with

extrapolation of VAR dynamics (see the simulation experiment in section 4). Third, Müller

and Watson (2008) pioneered the use of a small set of low-frequency statistics to address time

series questions about long-run objects. My paper combines long-run and short-run statistics

in a unified framework. Finally, Canova et al. (2010) highlighted that the treatment of trends

in hours was key to the estimates of the response of hours to technology shocks. Relative to

them, my paper provides a flexible approach to modeling trends and useful diagnostics for the

adequacy of long-run restrictions. A discussion of this point is made in section 5 and section 6

concludes the paper.

Notation. For integers t0, t1 with t0 ≤ t1, I use ωt0 :t1
to denote the sequence {ωt}

t1
t=t0

. When

each ωt is an array of dimension d1 × d2, and if no confusion is possible, I also use ωt0:t1

to denote the d1 × d2(j1 − j0 + 1) array obtained by horizontal concatenation of the terms of

{ωt}
t1
t=t0

. I write diag ωt0:t1
for the block diagonal matrix with blocks ωt0

, . . . , ωt1
. I write

ET[ωt] := T−1 ∑T
t=1 ωt for the average of ω1:T, “∼” for equality in distribution, “

p−→ ” for

convergence in probability, and “ =⇒ ” for weak convergence. If M is a matrix, ‖M‖ is its

Hilbert-Schmidt norm and, if M is symmetric positive definite, Ch(M) is its lower triangular

Cholesky factor. I denote by C the complex plane and by T := {z ∈ C : |z| = 1} the unit circle.

I equip T with the Hausdorff-1 measure µ restricted to its Borel sets and I let Lp = Lp(T, dµ)

be the space of Lp-integrable functions with respect to µ. Likewise, I denote by Z the set of

integers and I let `p = Lp(Z, dµc) be the space of `p-summable sequences, equivalently, Lp-

integrable with respect to counting measure µc. I write ‖ · ‖Lp (the essential supremum with

respect to µ when p = ∞) for the norm in Lp and ‖ · ‖`p for the norm in `p. When a sequence is

defined over a subset of Z its norm is computed by extending the original sequence to all of Z

setting the image outside the original domain to zero.
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2 Model

Consider the time series

yt =
∞

∑
l=0

Θlεt−l ,(1)

εt
iid∼ N (0n×1, Σε) ,

where both yt and εt are n-dimensional. The vector yt collects the variables of interest (e.g.,

indicators of economic activity, inflation, interest rates, productivity, and employment). At

this stage, it is not important whether yt is directly observed or latent. The vector εt, in turn,

contains the shocks driving yt (e.g., changes in demand, monetary policy, and technology). As

is standard, it is assumed that Σε = diag σ2
1 , . . . , σ2

n is a diagonal matrix. This way, no shock

can be predicted from past, present or future realizations of other shocks.6 Normality of shocks

can be dispensed with but, since it is convenient and occurs frequently in macroeconometrics,

I maintain it.

The coefficient matrix Θl measures the response of yt+l to the impulse εt and, owing to

it, the sequence Θ0:∞ receives the name of impulse-response function (IRF) for the system (1).

Knowledge of {Θ0:∞, Σε} completely determines the probability distribution of the time series

yt and, in particular, its dependence structure. Usual objects of interest are terms of the IRF

and forecast error variance decompositions (FEVD), which quantify the contribution of each

shocks to the conditional variance of the series at different horizons. These are functionals of

the parameter {Θ0:∞, Σε}. Some examples are described below.

As a minimum requirement, the infinite sum in (1) should make sense. The assumption

that follows takes care of it:

Assumption 1. Let Θ(z) := ∑∞
l=0 Θlz

l be defined for z ∈ T. Then,

(i) Θ0:∞ ∈ `1, i.e., ∑∞
l=0 ‖Θl‖ < ∞, and

(ii) det {Θ(z)} = 0 implies |z| > 1.

To set some notation, yt has autocovariance function Γl := E[ytyt+l ] (l ∈ Z) and spectrum

f (z) := Θ(z)ΣεΘ
′(z−1) = ∑∞

l=−∞ Γlz
l (z ∈ T).7 Assumption 1(i) imposes limited dependence:

6See Ramey (2016) for a discussion of this assumption.
7I call spectrum what is sometimes known as autocovariance generating function. The former is usually reserved

to f viewed as a function of arg(z) ∈ (−π, π], the principal value of the argument of z.
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it asks autocovariances to decay sufficiently fast. By 1(i), ∑∞
j=−∞ ‖Γj‖ < ∞ and, therefore,

Γ−∞:∞ ∈ `1 and f ∈ L∞. In particular, yt is stationary and has short memory. Assumption

1(ii) makes f positive definite over all of T. In particular, no linear combination of yt has zero

long-run variance and yt admits a VAR(∞) representation. It rules out overdifferencing (as in

Almuzara and Marcet (2019)) and noninvertibility (as in Plagborg-Møller (2019) and Plagborg-

Møller and Wolf (2019)).

2.1 Empiricaly relevant long-run restrictions

It is time to introduce the main concept of the paper.

Definition 1. Shock εkt satisfies an empirically relevant long-run restriction with respect to variable yjt

if the condition

[Θ(z)]jk =
∞

∑
l=0

Θl,jkzl = 0(2)

holds for all z = exp(iλ) with i :=
√
−1 and 0 ≤ λ ≤ λLR.

To interpret definition 1 consider first the case when λ = 0 (z = 1). Thus,

[Θ(1)]jk =
∞

∑
l=0

Θl,jk = 0,

or, in other words, the response of yjt to a unit change in εkt accumulates to zero at an infinite

horizon. This is the basis for the classical long-run restriction approach (see, e.g., Shapiro and

Watson (1988), Blanchard and Quah (1989), and King et al. (1991)).

One implication is that εkt does not contribute to the long-run variance of yjt. The long-run

variance of yjt is the limit of the variance of its (suitably scaled) sample mean,8

V0

(
yj

)
:= lim

T→∞
TVar

(
1
T

T

∑
t=1

yjt

)
=

n

∑
k=1

[Θ(1)]2jk σ2
k ,

Because the different shocks are uncorrelated to each other the long-run variance of yjt

8The calculation is as follows:

Var
(

ET

[
yjt

])
=

n

∑
k=1

[
0

∑
t=−∞

Var

(
1
T

(
T

∑
l=1

Θl−t,jk

)
εkt

)
+

T

∑
t=1

Var

(
1
T

(
T−t

∑
l=0

Θl,jk

)
εkt

)]
=

 n

∑
k=1

(
∞

∑
l=0

Θl,jk

)2
σ2

k
T

 (1 + o(1)),

where the second equality follows from dominated convergence applied to counting measure.
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decomposes into the sum of the contribution of each shock. Setting [Θ(1)]jk = 0 corresponds

to setting the contribution of the k-th shock to the long-run variance of yjt to zero.

Heuristically, one may think of the long-run variance of yjt as the variance of a “cycle” of

frequency λ = 0 (or infinitely long period) and of an equally weighted average as the nat-

ural way to extract it from yjt. A basic insight from the spectral analysis of time series (see,

e.g., Granger and Watson (1984)) is that, to extract a cycle of frequency λ, one should form an

average with trigonometric weights. The variance of such an average is

Vλ

(
yj

)
:= lim

T→∞
TVar

(
1
T

T

∑
t=1

yjt exp
(

t− 1
T

iλ
))

=
n

∑
k=1

[Θ(z)]2jk σ2
k ,

where z = exp(iλ). In light of that, definition 1 indicates that εkt satisfies a long-run restriction

relative to yjt if it does not contribute to the variance of cycles in yjt with frequency λ below the

cutoff frequency λLR.

The threshold frequency λLR, I argue, ought to be selected to reflect the idea of long run

that emerges from the application. So defined, a cycle of frequency λ repeats itself every 2π/λ

periods. If, e.g., the time unit is a quarter and there is a desire to let the long-run represent

variation below, say, an 8-year (i.e., 32-quarter) period one would simply take λLR = 2π/32.

Technology shocks. Let yt := (nt, xt)
′ with nt hours worked and xt an indicator of aggregate

labor productivity. Also, let εt := (εNt, εTt)
′ where εNt is a non-technology shock and εTt is a

factor-neutral technology shock. In line with (1), the dynamics of yt are given by

yt =

nt

xt

 =
∞

∑
l=0

Θ`,nN Θ`,nT

Θl,xN Θl,xT

εN,t−l

εT,t−l

 =
∞

∑
l=0

Θlεt−l ,

εt
iid∼ N (02×1, Σε) ,

and Σε = diag σ2
N, σ2

T.

As discussed in the introduction (section 1), a key object for business cycles models is the

IRF itself. The sign and magnitude of the dynamic effect Θl,nT of technology shocks on hours

for low l (often l = 0) have received a lot of attention in empirical work.

Another object of interest is the FEVD. This is the answer to the question of what fraction of

the forecast error variance of a given variable can be attributed to a certain shock. For example,

the fraction of the forecast error variance of labor productivity at horizon h accounted for by
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technology shocks is defined as

FEVDh(x, εT) :=
∑h

l=0 Θ2
l,xTσ2

T

∑h
l=0

(
Θ2

l,xTσ2
T + Θ2

l,xNσ2
N

) .

Clearly, FEVDh(x, εT) + FEVDh(x, εN) = 1 and FEVDh(n, εT) + FEVDh(n, εN) = 1 at each hori-

zon h and, in consequence, the more important technology shocks are in explaining the varia-

tion of aggregate labor productivity and hours, the less important non-technology shocks are.

Galí (1999) and Christiano et al. (2004) were among the first to analyze the bivariate model

of hours and productivity through long-run restrictions. They both imposed that

[Θ(1)]21 =
∞

∑
l=0

Θl,xN = 0

and employed US quarterly data to measure nt and xt. In this setup, it is natural to extend the

long-run restriction to an empirically relevant range of below-business-cycle frequencies, that

is, imposing

[Θ(1)]21 =
∞

∑
l=0

Θl,xN = 0

for z = exp(iλ), 0 ≤ λ ≤ λLR, with a choice of λLR reflecting variation beyond the business

cycle. I pursue the idea in section 5.

3 Identification

The identification problem is to recover {Θ0:∞, Σε} from knowledge of Γ−∞:∞ (or f ). Without

restrictions (beyond assumption 1), however, it is not possible to determine a unique value of

{Θ0:∞, Σε} from Γ−∞:∞. To see this, note that under assumption 1, yt admits the representation

yt =
∞

∑
l=0

Ωlut−l ,(3)

ut
iid∼ N (0n×1, Σu) ,

where Ω0 = In, Ωl = ΘlΘ
−1
0 , all l ≥ 1, and Σu = Θ0ΣεΘ

′
0.

There is a one-to-one correspondence between Γ−∞:∞ and {Ω0:∞, Σu} and the latter can be

obtained from limits of linear projections of yt onto its past. Thus, the identification problem is,
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equivalently, to determine {Θ0:∞, Σε} from {Ω0:∞, Σu} and the equation

Θ(z)ΣεΘ
′(z−1) =

(
∞

∑
l=0

Ωlz
l

)
Σu

(
∞

∑
l=0

Ω′lz
−l

)
, all z ∈ T.(4)

To simplify the exposition, I consider the normalization Σε = In. Alternatively, one could

restrict elements of Θ0 and leave the diagonal of Σε free. Let Q̃ be an n× n orthogonal matrix

and let the sequence Θ̃0:∞ be defined by Θ̃l := ΘlQ̃, all l ≥ 0. Then,(
∞

∑
l=0

Θ̃lz
l

)(
∞

∑
l=0

Θ̃′lz
−l

)
=

(
∞

∑
l=0

Θlz
l

)
Q̃Q̃′

(
∞

∑
l=0

Θ′lz
−l

)
= Θ(z)Θ′(z−1), all z ∈ T,

since Q̃Q̃′ = In by orthogonality. In consequence, if Θ0:∞ solves (4), so does Θ̃0:∞. The idea is

to distinguish Θ0:∞ from alternative Θ̃0:∞ by demanding that Θ0:∞ satisfies other restrictions,

such as long-run restrictions of the form (2). When this can be achieved, one says that Θ0:∞

is globally identified. In some situations, Θ0:∞ is not globally identified but, for every Θ̃0:∞

satisfying (4), Θ̃0:∞ek = Θ0:∞ek being ek the k-th column of In. In that case, one says the IRF of

the k-th shock is globally identified.

A last remark prior to getting into the details of the identification results is that if Θ0:∞

solves (4), one can find an n × n orthogonal matrix Q such that Θl = ΩjCh(Σu)Q, all l ≥ 0.

The problem is, in sum, to identify the orthogonal matrix Q that transforms the reduced form

{Ω0:∞, Σu} into Θ0:∞. In fact, because of this, for any two observationally equivalent values of

the parameter Θ0:∞ and Θ̃0:∞ (i.e. for any two values that fit (4)), there is an n× n orthogonal

matrix Q̃ such that Θ0:∞Q̃ = Θ̃0:∞.

3.1 Representation of identifying restrictions

My identification theory builds on that of Rubio-Ramírez et al. (2010). For any sequence Ml0:l1

of n1 × n2 matrices and for any n2 × n3 matrix M, let Ml0:l1 M denote the sequence of n1 × n3

matrices with l-th term Ml M.

To state the main results, I need a rotation-equivariant transformation g mapping Θ0:∞ to

an m× n matrix on which restrictions will be placed. Let P denote the parameter space, i.e.,

the set of all possible values for Θ0:∞. Let g : P → R
m×n be a function such that

g
(
Θ̃0:∞Q̃

)
= g

(
Θ̃0:∞

)
Q̃
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for all Θ̃0:∞ ∈ P and n× n orthogonal matrix Q̃.

The notation Θ0:∞ is reserved for the true value of the parameter while Θ̃0:∞ is a generic

element of P . Identifying restrictions will be represented by the m× m matrices {R1, . . . , Rn}
which select the linear combinations of g

(
Θ̃0:∞

)
equal to zero,

Rkg
(
Θ̃0:∞

)
ek = 0m×1, k = 1, . . . , n.

(5)

The matrix Rk imposes restrictions on the k-th column of g
(
Θ̃0:∞

)
. Let columns be ordered in

such a way that rk := rank(Rk) decreases with k, i.e.,

r1 ≥ · · · ≥ rn,

and let r = r1 + · · ·+ rn be the total number of restrictions.

To explain the role of g, let me select a grid of frequencies so that 0 ≤ λ1 ≤ · · · ≤ λnfr
≤ λLR.

Define the function gLR : P → R
m×n with m = nfrn by

gLR
(
Θ̃0:∞

)
:=


∑∞

l=0 Θ̃le
iλ1l

...

∑∞
l=0 Θ̃le

iλnfr
l


Then, gLR is rotation-equivariant since

gLR
(
Θ̃0:∞Q̃

)
=


∑∞

l=0 Θ̃lQ̃eiλ1l

...

∑∞
l=0 Θ̃lQ̃eiλnfr

l

 =


∑∞

l=0 Θ̃le
iλ1l

...

∑∞
l=0 Θ̃le

iλnfr
l

 Q̃ = gLR
(
Θ̃0:∞

)
Q̃.

To represent the implications of an empirically relevant long-run restriction of shock k with

respect to variable j, one would choose Rk to have ones in the entry (ifr, n(ifr − 1) + j) for each

ifr = 1, . . . , nfr and zeros elsewhere. Of course , if identification holds for the grid
{

λ1, . . . , λnfr

}
of frequencies, it also does for the continuum 0 ≤ λ ≤ λLR.

In practice, gLR will often be combined with other functions to produce identifying restric-

tions. To accommodate contemporaneous and long-run restrictions, e.g., one would use

g
(
Θ̃0:∞

)
:=

 Θ̃0

gLR
(
Θ̃0:∞

)

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which is easily seen to be rotation-equivariant.

Finally, as in Rubio-Ramírez et al. (2010), a normalization rule must be decided to settle the

sign of each equation. A normalization rule in my setup is a subset N ⊂ P such that, for each

Θ̃0:∞ ∈ P , there is a unique n × n diagonal matrix D with ones or minus ones on the main

diagonal such that Θ̃0:∞D ∈ N .

3.2 Identification results

The main result is as follows:

Theorem 1. Assume Θ0:∞ satisfies (5) and the normalization Θ0:∞ ∈ N . If,

rank

 Rkg (Θ0:∞)[
Ik 0k×(n−k)

] = n, for each k = 1, . . . , K,

then, Θ̃0:∞eK = Θ0:∞eK for all Θ̃0:∞ that solves (4) and satisfies (5) and the normalization rule. In

other words, the IRF of the K-th shock is globally identified. If moreover K = n, then Θ0:∞ is globally

identified.

The proof of theorem 1 can be found in appendix A. Despite the argument being similar

to that of Rubio-Ramírez et al. (2010), theorem 1 applies to a large class of strictly invertible

time series, with the restriction to a VAR model unnecessary. This is relevant for the study

of long-run restrictions because VAR models are highly restrictive for the form low-frequency

variability—a finite number of autocovariances determine the whole dependence structure of

the time series.

With the construction of the gLR function given in the previous section, theorem 1 covers

empirically relevant long-run restrictions (possibly combined with other types of identifying

restrictions). This I illustrate in the technology shocks example introduced in section 2.

Technology shocks. Consider the bivariate model of hours and productivity I described be-

fore. In order to simplify, let me construct the gLR function with nfr = 1, letting λnfr
= λ̄,

gLR
(
Θ̃0:∞

)
:=

∞

∑
l=0

Θ̃le
iλ̄l .

12



Thus, m = n = 2. Recall that, in my ordering of variables and shocks,

Θl =

Θ`,nN Θ`,nT

Θl,xN Θl,xT


and, in consequence, the first column of gLR refers to non-technology shocks. The empirically

relevant long-run restriction implies

RkgLR
(
Θ̃0:∞

)
ek = 02×1, k = 1, 2,

with

R1 :=

0 1

0 0

 and R2 := 02×2.

Applying theorem 1, one concludes that Θ0:∞ is globally identified if, for some λ̄ ≤ λLR,

∞

∑
l=0

Θl,xTeiλ̄l 6= 0.

This, in turn, holds for all λ̄ ≤ λLR by assumption 1(ii). Then, empirically relevant long-run re-

strictions which exclude non-technology shocks from low-frequency variation in productivity

suffice for the global identification of the IRF.

3.3 Overidentification

To be completed

4 Inference

It will be apparent later that sufficiently general dynamics in yt must be allowed for in order

to strengthen the credibility of the identification approach I propose. Thus, I take Θ to be

implicitly indexed by the sample size T and, consequently, one should formally think of yt

as originating in a triangular array {{yTt}
T
t=1}

∞
T=1. However, in the interest of simplifying

notation a sub-index T is omitted from Θ, yt and other objects that may vary with T (e.g.,

the autocovariance function and spectrum of yt).

However, to capture the scarcity of low-frequency information in the data I allow λLR to be

13



implicitly indexed by T.

To explain the approach to inference I advocate under the new method some preliminary

tools are needed. A central device from the low-frequency econometrics literature is the cosine

transform (as before, see Müller and Watson (2017)). Given a time series z1, . . . , zT the j-th

cosine transform is defined as

ZjT := T−1
T

∑
t=1

Ψj

(
t− 1/2

T

)
zt,

where Ψj(s) :=
√

2 cos(sjπ) for each j.

We must begin by noting that Ψ1, . . . , Ψq are orthonormal and may be regarded as a set

of basis functions. In this sense, it would be possible to employ sines or Fourier functions to

construct the basis but Müller and Watson (2008) give very compelling reasons why the cosine

transforms are preferred over those. I do not elaborate on those reasons here.

One simple interpretation of the cosine transforms is that ZT ≡ [Z1T, . . . , ZqT]
′ are projection

coefficients onto Ψ1, . . . , Ψq. In addition to that, note that the function Ψj is periodic with period

2/j. Therefore, it is valid (and very useful for extracting intuition) to think of ZjT as a summary

of the strength of a component with period 2T/j underlying the dynamics of zt.

One can then collectively interpret the full set of cosine transforms of the data as a filter that

isolates cycles representing long-run variation. A key insight from the low-frequency econo-

metrics literature is that q must taken small to reflect the scarcity of information about such

variation.

Technology shocks example. Let XT and NT be the cosine transforms of productivity and employ-

ment. Also, let x̂T = ΨXT and n̂T = ΨNT be the long-run projections.

For future reference, let YT := [X1T, N1T, . . . , XqT, NqT]
′.

Let YT be the cosine transforms of the time series yt. Because YT consists of weighted aver-

ages, when T is large and q is fixed one must expect

YT
approx∼ N

(
0(2q,1), Ω

)
.

Ω is determined by the local-to-zero spectrum S(λ): This is the L1-limit of

fy(e
iλ/T) = Θ(eiλ/T)ΣεΘ

′(e−iλ/T)

14



.

Recall from the calculations of the section that introduces the empirically relevant long-run

restrictions that we can think of fy(e
iλ) as the variance of cycles with frequency λ in yt. Recall,

as well, that the IRF operator Θ(z) = ∑∞
`=0 Θ`z` may vary with T (but dependence on the

index is omitted for ease of notation). One of the reasons why I do this is because it allows me

to accommodate scaling and, importantly, consider processes more general than I(0) and I(1)

processes.

The bottomline from the preceding discussion, which I borrow from the low-frequency

econometrics literature, is that one must only model S to obtain an approximate likelihood for

YT. And, moreover, simple models of S are good enough to capture interesting features of low-

frequency variability. The approach I propose for empirically relevant long-run restrictions

builds on the following:

Lemma 1. Under assumptions in Müller and Watson (2017, Thm. 1) each Wiener-Hopf factor of

fy(e
iλ/T) converges (in L1) to a factor of S(λ).

This rather technical lemma has a very simple interpretation in terms of the triangular fac-

torization. There are many ways to decompose fy(e
iλ) = a(eiλ)a′(e−iλ) and each a(eiλ/T) con-

verges to some a(λ) such that S(λ) = a(λ)a′(−λ).

Joining this lemma to the reasoning above we obtain the corollary that modeling S and

modeling a are equivalent tasks. Heuristically, we may regard a as capturing the part of the

dynamics in yt that dominate trending behavior. This makes perfect sense because this is the

part of the IRF of yt that are local to the long-run multipliers restricted under the traditional

approach to long-run restrictions.

Therefore, lemma 1 must be taken as a low-frequency analogue to the Wold decomposi-

tion theorem which, in turn, is not any different from a triangular decomposition theorem for

Toeplitz operators. The limit of Θ(eiλ/T) will be called the local-to-zero IRF.

Univariate example. Imagine that yt = θ(L)εt where for simplicity we take Var(εt) = 1 and

n = 1. Consider the following two cases. First, if yt is an I(0) process, it is well-known the local-

to-zero spectrum S is flat at the level of the long-run variance of yt. The local-to-zero IRF be-

comes flat as well. A simple calculation delivers θ(eiλ/T)→ θ(1). Second, if yt is an I(1) process,

the local-to-zero spectrum S becomes proportional to λ−2 in the vicinity of the zero-frequency.

In turn, the local-to-zero IRF behaves as θ(eiλ/T) = T−1(1− eiλ/T)−1θ̃(eiλ/T)→ iλ−1θ̃(1) where

θ̃ is an IRF displaying I(0) behavior.
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The key to the approach I propose is the following. The dynamics of yt (after appropriate

re-scaling by T) are modeled as

yt = Θ(L)εt = αT(L)H
−1ηt,

with ηt white noise having var(ηt) = In.

The identification assumptions are: (i) H−1 is a square root of Σε,

Σε = H−1(H−1)′.

and (ii) a set of empirically relevant long-run restrictions hold, e.g.,

α(λ)H−1 = lim
T→∞

αT(e
iλ/T)H−1 is lower triangular.

The intuition for the restriction is as discussed before but it is instructive to reconsider it in

the context of the newly defined local-to-zero IRF and in the context of our technology shock

example.

Technology shocks example. Recall that n = 2 and define h(λ) := α(λ)H−1. The corresponding

local-to-zero spectrum is S(λ) = h(λ)h(−λ). The element h11(λ) := [h(λ)]11 refers to the mul-

tipliers of ηTt on xt while the element S11(λ) := [S(λ)]11 is the variance of a cycle of frequency

λ/T in xt.

The assumption that h(λ) is lower triangular means that

S11(λ) = h11(λ)h11(−λ),

or, put in words, that only technology shocks contribute variance to cycles of frequency λ/T

in average productivity. Empirical relevance originates from restricting a range of frequencies

that represent below business cycle variation.

4.1 Parametric specification

Low-frequency econometrics reduces inference to a small-sample problem. An in a small-

sample problem there is no option but to proceed in a parametric way. That is why I pos-
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tulate a family of parametric representations for the local-to-zero IRF. Concretely, I provide the

following simple representation of the local-to-zero IRF, called the (A, c) model.

In the bivariate case, the (A, c) model is

α(λ) = A

(c1 + iλ)−1 0

0 (c2 + iλ)−1

A−1 · α̃,

where α̃ = α̃(1) is the long-run multiplier of some I(0) process.

One interpretation of the (A, c) model is as a low-frequency version of a VAR(1) model. To

see the connection consider the process

ỹt =
{

Ae−T−1diag(c1,c2)A−1
}

ỹt−1 + T−1ũt,

with ũt = α̃(L)ṽt an I(0) process.

I will now construct a low-frequency likelihood corresponding to the (A, c) model. Recall

that the low-frequency likelihood is simply the approximate likelihood of the fixed set of cosine

transforms under an asymptotic approximation in which T → ∞ with q (the number of such

transforms) fixed.

The local-to-zero spectrum for the (A, c) model is given by

S(λ) = AC(λ)A−1α̃Σvα̃′(A−1)′C′(−λ)A′,

where C(λ) = diag{(c1 + iλ)−1, (c2 + iλ)−1}.
The implied Ω in the asymptotic jointly normal distribution of YT is nearly block diagonal.

Each block of Ω is a weighted average of S, namely:

Ωjk = Cov
(

YjT, YkT

)
→
∫

R

(∫
[0,1]

Ψj(s)e
iλs
)

S(λ)
(∫

[0,1]
Ψk(s)e

−iλs
)

dλ.

As a practical matter, Ω can be approximated by Ψ′TVar(ỹ1:T)ΨT for large T.

Now, Σε remains the MSE matrix of the infinite-past prediction of yt. The presence of this

matrix means that it is not possible to construct inference about the structural parameters iden-

tified by long-run restrictions using low-frequency variation information alone. We need an

additional result.
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Lemma 2. There is a root-T uniformly consistent estimator of Σε.

Let Σ̂ε be this estimator. Uniform consistency refers to the set of all possible values that

(A, c, α̃) may take. The usefulness of the preceding lemma is that it justifies replacing Σε by

Σ̂ε into the low-frequency likelihood. The large-T approximate low-frequency likelihood is

therefore

p(YT|A, c, α̃) ∝
q

∏
j=1
{det(Ωjj)}

− 1
2 exp

{
− 1

2
Y′jTΩ−1

jj YjT

}
,

with Ωjj = Ωjj(A, c, α̃) computed from S(λ) = S(λ|A, c, α̃).

Technology shocks example. Any square-root of Σε can be written as Ch(Σε)P(θ) where Ch(Σv) is

the lower triangular Cholesky factor of Σε and P(θ) is an orthogonal matrix or rotation. In the

technology shock example we just need to consider two-dimensional rotations and these form

a one-parameter family,

P(θ) =

cos(πθ) − sin(πθ)

sin(πθ) cos(πθ)

 for θ ∈ (−1, 1].

Inference about H reduces to inference about θ, the angle of the rotation relative to the Cholesky

factor. This, as was anticipated, is a nonstandard estimation problem. The reason why this is a

nonstandard estimation problem is that uncertainty about Ch(Σε) is negligible for large T but

uncertainty about (A, c, α̃) remains in large samples and translates into uncertainty about θ.

Here is an important observation. The normalized angle θ is determined by the restriction

h12(λ|θ, A, c, α̃) ≡
[
AC(λ)A−1α̃Ch(Σv)P(θ)

]
12

= 0.

This amounts to a continuum of constraints. Trying to set them all may rule out plausible values

of (A, c, α̃) and, therefore, the question is how should we proceed. The simplest possible option

is to target just-identification: Enforce the constraint for a single λ = λ0 or, even better, enforce a

weighted average of the constraints. Another option is to allow for over-identification: Enforce

a small number of (weighted averages of) the constraints. In the implementation appearing in

the empirical application section I enforce a weighted average of the constraints, which is the

conceptually simpler case.

Frequentist inference is relatively straightforward in this context but in the implementation
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I show how to conduct Bayesian inference. These are the details: The low-frequency posterior

distribution of (A, c, α̃) given YT follows from Bayes rule, namely:

p(A, c, α̃|YT) ∝ p(YT|A, c, α̃) · p(A, c, α̃).

I use a flat prior on a bounded support of (A, c, α̃). The low-frequency likelihood is, of course,

as described above. To proceed, we implicitly condition on Σε. An algorithm to implement

the procedure is to first simulate draws from p(Σv|y1:T), and then to simulate draws from

p(A, c, α̃|YT) and compute θ. Draws of θ solve the equation

∫
R

h12(λ|θ, A, c, α̃) dW(λ) = 0.

A more flexible representation of α(λ): The (A, b, c, d) model is

α(λ) = A

b1 + (c1 + iλ)−d1 0

0 b2 + (c2 + iλ)−d2

A−1 · α̃,

where α̃ = α̃(1) is the long run multiplier of some I(0) process.

In constructing set estimators one may want to derive robustified set estimators: Infer-

ence about θ with nuisance parameters (A, b, c, d, α̃) using the corresponding least-favorable-

distribution implied set estimators or even derive bet-proof set estimators.

It must be noted that the difference in the rates at which information accumulates for the

two blocks produces a nonstandard inference problem in which it is not generally possible to

construct a consistent estimator of the structural IRF. Yet, meaningful inference is feasible and

relatively simple to obtain and in the paper I examine both frequentist and Bayesian procedures

with good statistical properties.

4.2 Comparison to other approaches

Blanchard & Quah (1989) determine H from the assumptions that

Σv = H−1(H−1)′ and α̃H−1 is lower triangular,

after suitable transformation of yt into an I(0) process. Thus,

H−1 = α̃−1 ·Ch(α̃Σvα̃′)
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Implementation is done by VAR models with lag length constraints.

Shapiro & Watson (1988) provide an IV representation of this approach. That is the classical

long-run restriction approach.

The comparison with my approach is as follows. In the present context such transforma-

tion depends on (A, c). There is an implicit presumption of certainty about (A, c). Large-T

consistent estimation of H follows from this certainty. Since yt is I(0), S is flat and there is

no information beyond λ = 0: I exploit information on frequencies in a T−1-neighborhood of

λ = 0.

In my approach (A, c, α̃) are not consistently estimable: Uncertainty about those parameter

does not vanish even as T → ∞. Consistent estimation of H is not possible as a consequence.

But perfectly valid and informative inference can be performed.

Recent studies focus on inference robust to near UR dynamics in nt: Near non-invertibility

of α̃. Yet identification by a restriction in the limit as t → ∞. Some references in this literature

are Gosporodinov (2010), Chevillon et al. (2017).

An approach that is taking off in empirical macroeconomics: Identification by maximizing

contribution to variance at long horizons. Econometrics of this method are not well understood:

Probably subject to bias. Fragile when two shocks are nearly equally important. A reference is

Neville et al. (2014).

5 Empirical analysis

In this aside the debate about the impact of factor-neutral technology shocks on aggregate em-

ployment and their importance for business cycle fluctuations in the U.S. economy is revisited.

A huge amount of work has been done in this area and a good part of it is not directly

related to long-run restrictions. See Ramey (2016) for a recent and complete account. From the

point of view of the proximity to the methodology of this paper I must mention Galí (1999) and

Christiano et al. (2004).

The real business cycle theory put forward the idea that a simple model featuring a repre-

sentative consumer optimally responding to shocks to the production technology of the econ-

omy is well able to reproduce the fluctuations from a large complex economy such us the U.S.

Galí (1999) challenged this idea empirically. He modeled the joint dynamics of (the first differ-

ences of logs of) labor productivity and (the first differences of) hours worked as a VAR. Next,

he separated technology from non-technology shocks by a long-run exclusion restriction: the
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responses of labor productivity to non-technology shocks accumulates to zero. As a result, he

estimates a small contribution to business cycle fluctuations (perhaps, too small compared to

the succeeding evidence) together with a negative contemporaneous response of employment

to technology shocks. Such a negative response is not compatible with the basic real business

cycle model (for reasonable parameter values).

Later, Christiano et al. (2004) report evidence against the conclusions of Galí (1999). They

modeled the joint dynamics of (the first differences of logs of) labor productivity and hours

worked (in levels) as a VAR. They also obtain identification of technology shocks by means

of a long-run exclusion restriction that states that the responses of labor productivity to non-

technology shocks sums to zero. They document that technology shocks matter significantly

for business cycle fluctuations and that the response of employment to them is actually positive.

The main difference between the two papers lies in the assumption that hours are either

I(0) or I(1). This is a secondary assumption for the identification of technology shocks and it is

somewhat unpleasant that results hinge so crucially on a secondary assumption.

In this context, I estimate a dynamic system that allows hours to display low-frequency

variation compatible with a range of models that nests the I(0) and I(1) alternatives. Long-run

and short-run statistics are displayed in the figures that follow.

FIGURE 1. Normalized square cosine transforms.

Next, I impose the long-run restriction that excludes non-technology shocks from labor pro-

ductivity understanding the long-run as variation taking place below a 8-year period. When I
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FIGURE 2. Series (green/dashed) and long-run projections (blue/solid).

do this I obtain a negative (and significantly different from zero) response of hours to technol-

ogy shocks and a modest (but not negligible) fraction of the variation in productivity accounted

for by technology shocks. A 90%-credible set for the response of a positive technology shock

(normalized to fit the units of labor productivity) is [−0.58,−0.19]. Regarding the importance

of technology shocks, a 90%-credible set for forecast error variance decomposition at horizon

h = 0 (i.e., at impact) is [0.02, 0.19].

For comparability, some results are replicated when the long-run is understood as variation

below a 30-year period instead of our shorter notion. Only in that case do I get a positive

response of hours and a larger forecast error variance decomposition at horizon h = 0. See

figures 3 and 4 in appendix A.

That the results differ so much is an indication that overidentifying restrictions may be at

fault. This is addressed in the following subsection.

6 Conclusion

This paper introduces an empirically relevant approach to long-run restrictions and argues that

these are natural and appealing in applied practice. The context typically provides a precise

and well-motivated notion of the long-run, and it is conceptually straightforward to impose
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FIGURE 3. Posterior densities from simulation draws.

and interpret restrictions under such a notion by means of the local-to-zero IRF. The iden-

tification content of the empirically relevant approach to long-run restrictions is thoroughly

explored by developing a general theory of identification.

Moreover, a convenient way to conduct inference about structural parameters and dynamic

causal effects is obtained by expressing the data in terms of two approximately independent

blocks: one that captures low-frequency variability and another that represents high-frequency

variability. Approximate likelihoods can be derived for each block (justified under a natu-

ral asymptotic framework) from where both frequentist and Bayesian inferences follow rather

easily. Because in this framework information about low-frequency variability accumulates

slowly, the inference problem is nonstandard with the implication that it is not generally possi-

ble to produce a consistent point estimator of the parameters of interest. However, meaningful

set estimators can be constructed and the two applications developed in the paper indicate that

empirically meaningful inference is possible.

The research I present in this paper speaks to a broader project of developing methods to

combine more realistic models of low-frequency variability with standard descriptions of short-

run dynamics. The spirit is eloquently expressed in the commentary made by Sims (2005) to

Galí (2005). I believe the likelihood separation principle I introduce in the paper is the natural

vehicle to perform such a combination and its possibilities should be explored in other contexts.

On a more concrete ground, I would like to highlight two additional directions for further

research. The first one is to investigate the possibility of formulating long-run sign restrictions
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FIGURE 4. Posterior densities from simulation draws.

or, more generally, sign restrictions on certain range of frequencies. The second one follows

more directly from the method explained in the paper. One may wish to use a long-run re-

striction in such a way that reflects a shock having a predominant (albeit not total) role in

accounting for the variance of components of a certain variable with sufficiently low frequen-

cies. More specifically, one could say that εkt accounts for a fraction within 1− δ of the totality

of the variance of a cycle of frequency λ in yjt, i.e., (1− δ)[Θ(z)]2(j,k) ≤ Vλ

(
yj

)
≤ [Θ(z)]2(j,k).
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A Proofs

A.1 Theorem 1

Proof of theorem 1. The argument parallels that of Rubio-Ramírez et al. (2010, th. 1).

Suppose there is Θ̃0:∞ that satisfies the identification condition (4) and the restrictions (5)

together with the normalization but for which Θ̃0:∞eK 6= Θ0:∞eK. There is, then, an orthogonal

matrix Q̃ with at least one non-zero off-diagonal element such that Θ0:∞Q̃ = Θ̃0:∞. Let k be the

index of the first column of Q̃ at which a non-zero off-diagonal element occurs.

For Θ̃0:∞eK 6= Θ0:∞eK to be true it must be that k ≤ K. Form the vector

vk := Q̃ek − Q̃kkek,

where ek is the k-th column of In and Q̃kk is the (k, k) entry of Q̃. The choice of k guarantees that

vk 6= 0n×1. Now, note that

Rkg (Θ0:∞) vk =
[
Rkg

(
Θ̃0:∞

)
− Q̃kkRkg (Θ0:∞)

]
ek = 0m×1

since both Θ̃0:∞ and Θ0:∞ satisfy (5). Also, note that

[
Ik 0k×(n−k)

]
vk = 0k×1,

by choice of k and because the k-th entry of vk is zero. Thus, Rkg (Θ0:∞)[
Ik 0k×(n−k)

] vk = 0(m+k)×1

for some nonzero vector vk indicating that, for some k ≤ K,

rank

 Rkg (Θ0:∞)[
Ik 0k×(n−k)

] < n

This establishes the first part of theorem 1. The second part follows from the first. �
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