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Abstract

I propose a new framework to distinguish between permanent and transitory income

changes that permits various forms of cross-sectional heterogeneity. This includes a model

in which log earnings are the sum of a permanent component and a transitory innovation

with household-specific variance; permanent income and the transitory income variance

are, moreover, potentially correlated. I establish nonparametric identification results and

introduce a flexible estimation method. Using data from the Panel Study of Income Dy-

namics, I find that (i) heterogeneity in transitory risk is sizable with a highly asymmetric

distribution and (ii) permanent income and transitory risk have a negative nonlinear rela-

tionship. Finally, I reassess the evidence on nonlinear transmission of income shocks.
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1 Introduction

The distinction between permanent and transitory income changes occupies a central place in

various areas of economic analysis. It does in the study of earnings mobility (e.g., Lillard and

Willis (1978), Meghir and Pistaferri (2004), and Gottschalk and Moffitt (2009)) where the rel-

ative magnitudes of permanent and transitory changes determine the persistence of income

inequality. It also does in the study of consumption and labor supply choices by households

(e.g., Hall and Mishkin (1982), Abowd and Card (1989), Deaton and Paxson (1994), Blundell

and Preston (1998), Blundell et al. (2008), Altonji et al. (2013), and Arellano et al. (2017)), and

more generally, in quantitative macroeconomic models (e.g., Kaplan and Violante (2010)). Un-

derstanding the nature of changes in inequality and household responses to income shocks is

relevant for both academic and policy discussions.

In practice, permanent and transitory changes in earnings are not directly observed. For

the framework to be useful, it must be possible to identify those changes from data on total

household earnings. One approach uses observed events, such as long illness, unemployment

spells, and tax refunds, as a proxy (or instrument) for permanent and transitory changes (e.g.,

Cochrane (1991) and Souleles (1999)). Another approach relies on restricting the dependence

among the unobserved shocks to enable their deconvolution (e.g., MaCurdy (1982), Horowitz

and Markatou (1996), Bonhomme and Robin (2010), and Arellano and Bonhomme (2019)). The

most common restrictions include statistical independence between permanent and transitory

components and serial independence of transitory shocks. While convenient, such restrictions

rule out potentially interesting dimensions of earnings uncertainty. In particular, they leave

aside the possibility to learn about heterogeneity in transitory income variances, a feature high-

lighted by a number of labor market models.

Motivated by that observation, in this paper I propose a framework that can separate per-

manent and transitory components while permitting dependence between them. My primary

focus is on a model in which the variance of transitory income shocks is cross-sectionally het-

erogeneous and possibly correlated with the initial level of permanent income. With a small

abuse of vocabulary, I call it the heterogeneous transitory risk (HTR) model and I introduce it

in section 2.

Everyday experience is rich in situations where workers differ in their transitory income

risks. The waiter has her fortune tied to the vagaries of customer sympathy; the school teacher

has not. A large literature attributes those differences to risk allocation, to the need to protect
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investments from hold-up problems, and to asymmetric information.1 Moreover, workers tend

to remain in the same firm—and, more broadly, within the same activity—for long periods.2

The result is a cross-sectional distribution of transitory risks that changes only slowly over the

working life of individuals. In short panels, then, it is reasonable to treat the distribution as

fixed, as the HTR model does.3

The HTR model is a suitable tool to quantify the extent to which households differ in their

transitory income volatilities. There are at least three reasons why such an exercise is important.

First, the transitory component explains a large fraction of the variance of yearly changes in

household incomes (close to 90% according to estimates from the US economy). They compose,

thus, the bulk of the uncertainty that impacts on households decisions and welfare. Second,

transitory shocks are policy relevant because many economic policies (e.g., tax rebates and

certain forms of income transfers) are often perceived as temporary. Third, in models with

incomplete markets, heterogeneity in transitory risks maps to heterogeneity in self-insurance.

This suggests that estimates of insurance coefficients which neglect differences in transitory

risks may be misleading.

In addition, the HTR model permits measuring the correlation between permanent income

and transitory risk. Low permanent-income households, who typically have less means to

insure their consumption (e.g., due to tighter borrowing constraints), are likely to experience

the largest losses from a given exposure to transitory risk. In consequence, the association

between permanent income and transitory risk matters for thinking about welfare implications

of changes in inequality and policy.

My paper makes two different types of contributions. The first are methodological. I es-

tablish nonparametric identification results for a class of permanent-transitory models which

do not assume independence between latent components. The distribution of time-invariant

cross-sectional heterogeneity can, accordingly, be recovered from the distribution of observ-

ables in short panels. For the HTR model, this means that the joint distribution of permanent

income and transitory risk is uniquely determined by the distribution of observed earnings. A

full discussion is the subject of section 3.

Relaxing the independence of unobserved shocks is challenging as it invalidates the linear

1Malcomson (1999) gives a complete review.
2This emerges in a model in which workers accumulate activity-specific capital, i.e., capital that would have a

small return if applied to other activities. A comprehensive summary of this dimension of mobility can be found in
Farber (1999).

3Notice that heterogeneity in workers’ transitory risks aggregates to heterogeneity in households’ transitory
risks unless a very special form of sorting takes place. Also notice that, in a more detailed analysis which allows for
job changes, the worker-specific variance would turn into a within-job fixed effect.
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deconvolution techniques typically employed in the literature to establish identification (e.g.,

Kotlarski (1967) and Székely and Rao (2000)). The approaches followed in Wilhelm (2015)

and Arellano et al. (2017) do not apply either. Instead, my identification results build on the

techniques developed by Hu and Schennach (2008) in their treatment of econometric models

with nonclassical measurement error.4 To state the conditions for my result, consider a model

with a k-dimensional individual-specific parameter ξ and observables y1, . . . , yT. If one can

choose a t so that (i) yt is independent of yt−k, . . . , yt−1, yt+1, . . . , yt+k given ξ, (ii) yt−k, . . . , yt−1

are independent of yt+1, . . . , yt+k given ξ, and (iii) there is a functional of the distribution of

yt−k, . . . , yt−1 conditioned on ξ that equals ξ, the distribution of ξ is identified.5 The HTR model,

for example, satisfies the conditions with T ≥ 5; an enhanced version of the HTR model with

household-specific variances of permanent shocks demands T ≥ 7, and so on. As in random

coefficients panel data models, the more individual-specific parameters, the richer the time

series dimension needed to identify their distribution (e.g., Arellano and Bonhomme (2012)).6

Furthermore, I introduce a flexible estimation method for the distribution of individual-

specific parameters. Given that in applications researchers often want to allow for (strictly

exogenous) covariates, I propose a method that handles covariates in a convenient way.7 My

proposal is based on the specification of flexible approximations to nonparametric functions

of covariates and distributions of latent variables. As in sieve approaches, unknown functions

and distributions are, for a given approximation, defined by a set of moment conditions that

involve both observables and latent variables. To render the moments feasible, I use a stochastic

EM algorithm that alternates between (i) simulation of latent variables from their conditional

distribution given data and (ii) moment equations. My method relates to recent developments

in the estimation of latent variables models (e.g., Arellano and Bonhomme (2016), Arellano

et al. (2017), and Arellano and Bonhomme (2019)). The details can be found in section 4.

The second type of contributions of my paper are empirical. Using data from the Panel Study

of Income Dynamics (PSID), I estimate the HTR model and conduct a fully-fledged empirical

analysis. I focus on two panels constructed from the 1999-2009 waves of the PSID. The first

is a panel of the labor earnings plus transfers of families in which the representative person is

a married male individual—a panel of households. The second uses labor earnings of repre-

sentative persons alone without the restriction to married males—a panel of workers. While a

4Hu (2019) offers a complete review of this literature.
5Requirements on boundedness of densities and completeness of certain distributions are needed too.
6At least in the HTR model, the requirement that T ≥ 2k + 1 cannot be relaxed in a meaningful way.
7The argument for the identification of the conditional distribution of individual-specific parameters given co-

variates is essentially the same as the one given for the unconditional distribution.
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panel of households is better suited to link earnings uncertainty and consumption insurance, a

panel of workers is closer to the labor market models that suggest heterogeneity in transitory

income variances.

My empirical findings can be summarized as follows. First, differences in transitory income

risk are sizable, both across households and workers, and they are asymmetrically distributed.

To get a sense of it, I compare transitory variances with their average (a model with no hetero-

geneity would attach the average variance to every unit): 50% of the households have half the

average variance or less, while 16% have twice the average variance or more. Workers, in turn,

portray slightly less—still significant—heterogeneity than households.8 Second, permanent in-

come and transitory risk are negatively associated: low permanent-income households tend to

face more volatile transitory incomes than their higher permanent-income counterparts. The

association, however, is not absolute—variation of transitory risks around the tendency exists

at each level of permanent income—and is nonlinear. The same holds for workers.

The PSID provides the means to perform three additional exercises. First, many papers have

documented a rapid rise in the variance of transitory income shocks during the 70s and 80s.9

By applying the HTR model to a sequence of panels around the period, I can measure changes

along the whole distribution of transitory risks—not just in the average—that complement the

original evidence. Second, the PSID collects data on labor market variables (self-employment

status, occupation, sector, etc.). I can investigate the correlation between these variables and

individual-specific transitory risks. Finally, I use the transitory income shocks from the HTR

model together with consumption data to estimate insurance coefficients. The full empirical

analysis is developed in section 5.

Earnings uncertainty has produced a vast literature. Three branches of it are most closely

related to my paper. On one side there are models with nonparametric heteroskedasticity (e.g.,

Botosaru (2017) and Botosaru and Sasaki (2018)). These typically leave aside time-invariant het-

erogeneity and dependence between permanent and transitory components—a void that my

paper addresses. Second, Browning et al. (2010) and Alan et al. (2018) study models with “lots

of heterogeneity”—they permit a high-dimensional household-specific parameter with unre-

stricted joint distribution—while Hospido (2012) explicitly includes a worker-specific factor in

the variance of wages in her model. My paper differs from them in that I consider a model

that distinguishes between permanent and transitory shocks (a two-error model as opposed to

8This is consistent with the approximately additive aggregation of the transitory incomes of spouses. More so if
shocks to them have a positive correlation as estimated by Blundell et al. (2016).

9See Gottschalk and Moffitt (2009) for a review.
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the one-error models of these papers) and my approach is nonparametric. The latter turns out

to be important to capture the nonlinear relation between latent components in the empirical

analysis. The two-error model I study is closer to the parametric model in Chamberlain and

Hirano (1999) except that I allow for dependence of transitory risk with permanent income.

The third strand that matters for my paper is the nonlinear transmission of income shocks,

and particularly the ABB model of Arellano et al. (2017). Flexible estimates of predictive dis-

tributions reveal that the persistence of past income changes varies with the size and sign of

current changes and with the extant level of income (e.g., (Arellano et al., 2017, fig. 1)). They

also reveal a decreasing conditional skewness with respect to current income (e.g., Guvenen

et al. (2014) and Arellano et al. (2017)). Though not obvious, such patterns are consistent with

the HTR model, just as they are consistent with the ABB model. This does not mean that the

two models are observationally equivalent. In fact, there are restrictions on the distribution of

observables imposed by the HTR model not shared by the ABB model and I exploit them to

construct diagnostics. That those diagnostics indicate the HTR model is not at odds with the

data used in Arellano et al. (2017) implies a reassessment of the evidence on nonlinear persis-

tence. Some parts of sections 2 and 5 deal with that discussion and section 6 concludes.

Notation. For integers j0, j1 with j0 ≤ j1, I use ωj0 :j1 to denote the sequence
{

ωj

}j1

j=j0
. The

elements ωj0 , . . . , ωj1 need not be arrays of the same dimension and, thus,
{

ωj

}j1

j=j0
is generally

an ordered list. When each ωj is an array of dimension d1 × d2, and if no confusion is possible,

I also use ωj0:j1 to denote the d1 × d2(j1 − j0 + 1) array obtained by horizontal concatenation of

the terms of
{

ωj

}j1

j=j0
. I write diag(ωj0:j1) for the block diagonal matrix with blocks ωj0 , . . . , ωj1 .

I adopt the conventions ∑
j0
j=j1

ωj = 0 and ∏
j0
j=j1

ωj = 1 if j0 < j1. I write EJ

[
ωj

]
≡ J−1 ∑J

j=1 ωj

for the average of ω1:J (often J = n), “∼” for equality in distribution, “
p−→ ” for convergence in

probability, and “ =⇒ ” for weak convergence. Finally, if x and y are generic random elements,

I write Py and Py|x for the probability measure of y and of y conditioned on x.

2 Model

I denote by yit the log income of household i at time t and by xi a set of covariates. Note xi may

contain both time-invariant and time-varying covariates, individual and aggregate. Also note t

refers to time as opposed to age, which will be often included in xi. Let yi,1:T be the log income

history of household i through times 1 to T and let
{

yi,1:T, xi
}n

i=1 be a balanced panel.
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The heterogeneous transitory risk (HTR) model decomposes log income into deterministic,

permanent and transitory components of variation:

yit = µit + η̃it + ε̃ it, i = 1, . . . , n, t = 1, . . . , T.(1)

Deterministic income is determined by covariates and all its heterogeneity is observable,

µit = µt(xi) = E[µit|xi] .(2)

Permanent income, in turn, evolves as a random-walk with initial level η̃i1 = ηi,

η̃it = η̃i,t−1 + υit = ηi +
t

∑
s=2

υis,(3)

E[ηi|xi] = 0,

E
[
υi,2:T

∣∣xi
]
= 01×(T−1).

Finally, transitory income has unit-specific variance σ2
i ,

ε̃ it = σiε it,(4)

E
[
σ2

i

∣∣∣xi

]
= 1,

E
[
ε i,1:T

∣∣xi
]
= 01×T.

Given covariates, I assume permanent and transitory income shocks are independent of each

other and over time (although not necessarily identically distributed). I further assume them

independent of the initial level of permanent income ηi and of transitory income variance σ2
i

but—and this is empirically relevant—I permit dependence between ηi and σ2
i . In sum,

(ηi, σ2
i ) ⊥ υi2 ⊥ · · · ⊥ υiT ⊥ ε i1 ⊥ · · · ⊥ ε iT

∣∣∣∣ xi.(5)

As I will argue below, the object of interest is precisely P
(η,σ2)|x, the class of joint distributions

of (ηi, σ2
i ) conditioned on xi.

Remarks about assumptions. The conditional independence of income shocks and the extant

level of permanent income is standard in the literature on earnings uncertainty. It is a natural

starting point as it embodies the notion that changes in permanent and transitory income are
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totally unpredictable. From a substantive point of view, the presence of σ2
i and its possible

dependence to ηi are attractive elements of the HTR model, as emphasized in section 1. From

the statistical point of view, they introduce dependence between permanent and transitory

incomes, raising challenges to identification that I address in section 3.

Mean-independence restrictions on ηi, υi,2:T, and ε i,1:T in (3) and (4) are akin to random

effects panel data approaches and explicitly or implicitly underlie any empirical analysis of

income processes. Despite restricting the mean of ηi, υi,2:T, and ε i,1:T, they leave the conditional

distributions Pη|x, Pυt|x (t = 2, . . . , T), and Pεt|x (t = 1, . . . , T) otherwise free. In particular,

dependence of higher-order moments of ηi, υi,2:T, and ε i,1:T on xi is permitted.

The mean-independence constraint on σ2
i is, in this context, a convenient normalization. It

serves the purpose of separating the mean of σ2
i from the scale of ε i,1:T. Noting

Var(ε̃ it|xi) = E
[
σ2

i

∣∣∣xi

]
·Var(ε it|xi) , t = 1, . . . , T,

reveals that other possibilities exist, e.g., setting Var(ε i1|xi) = 1 or T−1 ∑T
t=1 Var(ε it|xi) = 1.

It is not difficult to map the implications of one normalization onto the others, but one must

be careful in interpreting P
σ2|x and Pεt|x (t = 1, . . . , T). Finally, dependence of higher-order

moments of σ2
i on xi are not constrained.

In section 3, I will show that the mean-independence assumption may be substituted by,

e.g., median-independence or, more generally, by restrictions on conditional quantiles.

Sources of heterogeneity. The HTR model’s stamp is the inclusion of σ2
i as a vehicle for het-

erogeneity in addition to the usual ηi of the canonical model. By (1), (2), (3), and (4), the HTR

model maps covariates xi and latent variables
{

ηi, σ2
i , υi,2:T, ε i,1:T

}
to earnings histories yi,1:T. To

be specific,

yit = µt(xi) + ηi +
t

∑
s=2

υis + σiε it.(6)

From the statistical point of view, the HTR model maps probability distributions of covariates

and latent variables Px, P
(η,σ2)|x, Pυt|x (t = 2, . . . , T), and Pεt|x (t = 1, . . . , T), into probability

distributions for earnings data Py|x

By (6) and the assumptions above,

E
[
yit

∣∣∣xi, ηi, σ2
i

]
= µt(xi) + ηi,(7)
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Var
(

yit

∣∣∣xi, ηi, σ2
i

)
=

t

∑
s=2

σ2
υs
(xi) + σ2

i σ2
εt
(xi),(8)

where σ2
υt
(xi) ≡ Var(υt|xi) (t = 2, . . . , T) and σ2

εt
(xi) ≡ Var(εt|xi) (t = 1, . . . , T). In other words,

the HTR model allows for time-varying observed and permanent unobserved heterogeneity in

both mean and variance (cf. the linear error-component regression model (e.g., (Arellano, 2003,

Ch. 3))).

2.1 Heterogeneity vs uncertainty

It is a common fact in short panels that heterogeneity and uncertainty, which have radically

different individual implications, often derive in similar aggregate implications—sometimes,

to such extent that heterogeneity and uncertainty cannot be distinguished.

The HTR model and the ABB model of Arellano et al. (2017) exemplify the situation. At

the individual level, the HTR model is nothing but the canonical model of earnings dynamics;

nonlinearities in the aggregate arise as a consequence of heterogeneity. The ABB model tells

the opposite story: individuals face nonlinear permanent income processes which emerge to

the surface in the distribution of earnings. Their implications for certain higher-order features

of the distribution of earnings look alike as the following simulation experiment and a stylized

example (developed in appendix A) show. In particular, unit-specific variances in transitory

income can lead to a pattern of nonlinear persistence and decreasing conditional skewness as

in the ABB model.

A simulation experiment. Consider a version of the HTR model with no covariates:

yit = ηi +
t

∑
τ=2

υis + σiε it, t = 1, . . . , T, i = 1, . . . , n.

In addition to (5), I assume that ηi ⊥ σ2
i and

ηi ∼ N
(

0, σ2
η

)
, σi ∼ Γ

(
ν/2, 2/

√
ν(ν + 2)

)
, υit ∼ N

(
0, σ2

υ

)
, ε it ∼ N

(
0, σ2

ε

)
.

I calibrate the parameters to σ2
η = 0.15, σ2

υ = 0.01, σ2
ε = 0.05, and ν = 11.45 (to get E

[
σ2

i

]
= 1

and Var
(

σ2
i

)
= 0.75). These numbers are in line with the estimates I obtain later, except that
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dependence between ηi and σ2
i is not allowed here.10

I simulate nMC = 1, 000 samples with n = 1, 000 and T = 6 and I estimate in each of

them flexible quantile autoregressions of yit on yi,t−1 (I use a third-order Hermite polynomial

of yi,t−1). With the estimates, I construct the measures of nonlinear persistence and conditional

asymmetry in Arellano et al. (2017). Figure 1 reports the average across simulations.

FIGURE 1. Quantile autoregressions of simulated log earnings
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The figure is to be compared with (Arellano et al., 2017, figs. 2 and 4). The lower persistence

for high-income households subject to a bad shock and low-income households subject to a

good shock emerges despite the fact that the permanent component has constant persistence

across households. Some intuition for the observed pattern is that households with a high-

in-absolute-value income experiencing a large change of the opposite sign are likely to have a

high σ2
i and therefore, for them, transitory income is a larger fraction of total income and the

link between past and current income is weaker. See appendix A for a discussion.

Tests. The HTR and the ABB models appear to be testable. Constructing a test of the two non-

nested nonparametric hypotheses, however, requires econometric techniques the development

of which greatly exceeds the scope of my paper. Given the importance of this distinction,

what I address (in section 5 and appendix C) is the construction of specific diagnostics for the

restrictions implied by the HTR model.

10Compare the inverse gamma distribution in Chamberlain and Hirano (1999). The posterior mean of the param-
eters they estimate suggests a distribution for σ2

i with no well-defined mean and variance.
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2.2 Preview of the empirical analysis

The HTR model is amenable to a fully-fledged empirical exercise. The task is to quantify the

heterogeneity in transitory income risk, relating it to observed and other unobserved sources

of heterogeneity. The exercise was motivated in section 1.

The culmination of the empirical exercise is a set of statements about

θ =
{

P
(η,σ2)|x, Pυ2|x, . . . , PυT |x, Pε1|x, . . . , PεT |x

}
,

formally, the unknown parameter of the HTR model. I describe some of the statements below.

The need for a normalization of σ2
i , which will become apparent in analyzing identifica-

tion in section 3, means that care must be exercised in constructing measures of inequality in

transitory income risk from the HTR model.

The cleanest approach is to treat observed and unobserved drivers of transitory income risk

jointly. Consider the transitory income volatility of household i at time t,

σ̃it ≡ σiσεt
(xi) =

√
Var
(

ε̃ it

∣∣∣xi, ηi, σ2
i

)
.

This is a clear measure of the scale of transitory income of household i. It is the ideal measure

if the distribution of the standardized innovation ε̃ it/σ̃it does not depend on xi — it does not

depend on σi. In that case, the probability that household i receives a transitory income shock of

absolute value greater than κσ̃it is exactly the same as the probability that household i′ receives

a transitory income shock of absolute value not less than κσ̃i′t, for all κ ≥ 0. Moreover, the

distribution Pσ̃t
of σ̃it is completely determined by P

σ2|x, Pεt|x, and Px, and, therefore, by the

parameter θ. So is the conditional distribution Pσ̃t|x.

The extent of heterogeneity in transitory risk. Any measure of the dispersion of the distri-

butions Pσ̃t
or Pσ̃t|x serves to quantify the cross-sectional inequality in transitory income risks.

It is of particular interest to compare the median volatility with the average volatility, both

conditional to given selected values of the covariates and unconditionally, and to measure the

proportion of households with σ̃it above certain threshold.

Permanent income and transitory risk. Permitting dependence between ηi and σ2
i is appeal-

ing because the association between permanent income and transitory risk uncovers poten-

tially important dimensions of inequality. The conditional distribution Pσ̃t|x,η , which charac-
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terizes the association, can be obtained from P
(η,σ2)|x, and Pεt|x. Such objects as the conditional

expectation function E[σ̃it|xi, ηi] and simpler linear projection coefficients, together with their

mean squared errors, give suitable summaries of the relation between permanent income and

transitory risk.

Secular trends. A number of empirical papers have documented the steady increase in the

variance of transitory income shocks unfolding throughout the end of the twentieth century.

Applying the HTR model to a sequence of panels around the period, one can display a more

complete picture of the trend by measuring changes over time along the whole distribution of

transitory risk, and not just in the average.

Consumption passthrough and labor market variables. It will be possible to extend the iden-

tification argument and estimation technique to permit regressions of σ2
i on labor market vari-

ables and of consumption changes on transitory income shocks ε̃ it and ε it.

3 Identification

The purpose of this section is to establish that P
(η,σ2)|x is identified from Py1:T |x if a sufficient

number of periods—it turns out to be T = 5—are available. To simplify the exposition, I omit

covariates (equivalently, I assume xi = 1, a.s.); to allow for covariates in the argument below

all that is needed is to replace expectations and distributions by conditional expectations and

conditional distributions.

I begin with a few preliminary observations. First, without covariates, the deterministic

income component reduces to µ1:T and is identified by the mean of y1:T: using (3) and (7),

E
[
yi,1:T

]
= µ1:T + E[ηi] 11×T = µ1:T. Second, a calculation like (8), using (3) and (4), gives

Var
(
y′i,1:T

)
=


σ2

η σ2
η . . . σ2

η

σ2
η σ2

η + σ2
υ2

. . . σ2
η + σ2

υ2
...

...
. . .

...

σ2
η σ2

η + σ2
υ2

. . . σ2
η + ∑T

s=2 σ2
υs

+ diag
(

σ2
ε1:T

)
.

In consequence, σ2
η , σ2

υ2
, . . . , σ2

υT−1
, σ2

ε1
, . . . , σ2

εT−1
, and σ2

υT
+ σ2

εT
are identified. Furthermore, defin-

ing σ2
ηt
≡ Var(η̃it), it follows that σ2

ηt
is identified for t = 1, . . . , T − 1.

Thus, with T income observations per unit it is possible to separate the contribution of
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permanent and transitory components to the variance of income during period t for all periods

except the last. That is the standard result in the canonical model: the presence of σ2
i is no

obstacle to the identification of the variances of permanent and transitory components.

The role of the normalization. If, instead of assuming E
[
σ2

i

]
= 1 as I did, I were to assume

σ2
ετ
= 1, the result would be the identification of E

[
σ2

i

]
together with σ2

εt
for all t = 1, . . . , T− 1,

except if τ = T. The reason is that permanent and transitory income variances cannot be

disentangled for the last period. For similar reasons, the normalization T−1 ∑T
t=1 σ2

εt
= 1 would

not give identification.

Beyond first and second moments. It is apparent that if the objective is to learn about the

covariance matrix of (ηi, σ2
i ), first and second moments of observed log earnings histories are

not enough. Before turning to the identification of P
(η,σ2)

, I address first the identification of

Var
(
(ηi, σ2

i )
)

in the following subsection.

3.1 Identification of the second moments of (ηi, σ2
i )

Note Var(ηi) is identified with as few periods as T = 2. To get identification of Cov
(

ηi, σ2
i

)
and Var

(
σ2

i

)
more periods are needed.

Theorem 1. In the HTR model, the following holds:

(i) Cov
(

ηi, σ2
i

)
is identified provided T ≥ 4 and

Cov
(

ηi, σ2
i

)
=

Cov
(

yit, (∆yiτ)
2
)

Var(∆ε iτ)
,

for all τ > t + 1.

(ii) Var
(

σ2
i

)
is identified provided T ≥ 5 and

Var
(

σ2
i

)
=

Cov
(

∆y2
it, ∆y2

iτ

)
Var(∆ε it)Var(∆ε iτ)

,

for all τ > t + 1.

The proof can be found in appendix A.
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Linear regression. A consequence of theorem 1 is that the linear regression of σ2
i onto ηi,

E
∗
[
σ2

i

∣∣∣ηi

]
= 1 +

Cov
(

ηi, σ2
i

)
Var(ηi)

ηi,

is identified with T ≥ 4. The mean squared error of the linear regression,

MSE
[
σ2

i

∣∣∣ηi

]
= Var

(
σ2

i

)
−

{
Cov

(
ηi, σ2

i

)}2

Var(ηi)

is identified with T ≥ 5. There is more than one way to express the regression coefficient and

the mean squared error as functionals of the distribution of earnings histories since the HTR

model imposes overidentifying restrictions.

Stationarity assumptions. The requirement in theorem 1 that T ≥ 4 for the identification of

Cov
(

ηi, σ2
i

)
and T ≥ 5 for the identification of Var

(
σ2

i

)
can be relaxed to T ≥ 3 and T ≥ 4 if

one assumes stationarity of the variance of ε i,1:T or, more generally, any other known relation

between σ2
εT

and σ2
ε1

, . . . , σ2
εT−1

.

3.2 Identification of the distribution of (ηi, σ2
i )

I have shown that T ≥ 5 suffices to identify Var
(
(ηi, σ2

i )
)

. The requirement is necessary for

the identification of Var
(
(ηi, σ2

i )
)

from the covariance matrix of (y1:T, y2
1:T) if σ2

εT
is unrestricted

and so are the third and fourth moments of υi,2:T and ε i,1:T. What I show next is that with T ≥ 5

and under rather mild constraints on the parameter space for θ, the distributions

{
P
(η,σ2)

, Pυ2
, . . . , PυT−1

, Pε1
, . . . , PεT−1

, PυT+εT

}
are identified. As pointed out at the beginning of this section, conditional distributions given

covariates are identified by an entirely analogous argument. Also note that the distributions of

υiT and ε iT cannot be disentangled, just as their variances.

My identification argument builds on the analogy between the HTR model and econometric

models with nonclassical measurement error (see Bound et al. (2001)). A large literature exists

about the identification of such models. Most relevant to my analysis is the paper by Hu and

Schennach (2008). In what follows, identification of P
(η,σ2)

will be established as an application

of their theorem 1.
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Hu and Schennach (2008) study a model in which there is a dependent variable y, a true

regressor x∗, its error-ridden counterpart x, and an instrument z, and give general conditions

under which Py|x∗ , Px|x∗ , and Px∗|z are (a.s.) uniquely determined by P(x,y)|z. To describe the

analogy, let me select t so that 1 ≤ t − 2 < t + 2 ≤ T (which asks for T ≥ 5). Then, as will

become clear soon, yit will play the role of the dependent variable, (η̃it, σ2
i ) the role of the true

regressor, yi,(t−2):(t−1) will be the noisy measurement, and yi,(t+1):(t+2) the instrument.

My approach first identifies Py(t−2):(t−1)|(η̃t,σ
2)

and P
(η̃t,σ

2)|y(t+1):(t+2)
. With this on hand I then

establish identification of the rest of the distributions in the statement.

In addition to the restrictions already imposed by the HTR model I need an assumption of

a slightly more technical nature.

Assumption 1. The parameter θ satisfies the following:

(i) The distributions P
(η,σ2)

, Pυ2
, . . . , PυT

, Pε1
, . . . , PεT

all admit bounded densities with respect to

the corresponding Lebesgue measures.

(ii) For each t = 2, . . . , T, no nonzero real function f exists for which

E

[
f

(
η +

t−1

∑
s=2

υis + σε i,t−1, υit + σ∆ε it

)]
= 0 for all (η, σ2) ∈ supp

(
(ηi, σ2

i )
)

.

Moreover, the characteristic functions of υi,2:T and ε i,1:T are non-vanishing.

Assumption 1 has two parts. The first part imposes that latent variables possess bounded

densities and, in particular, that they are (absolutely) continuous random variables. This is not

very restrictive for ηi, υi,2:T, and ε i,1:T, but it does rule out some important classes of marginal

distributions for σ2
i , e.g. the gamma distribution with shape parameter below unity and dis-

crete distributions. The identification of a model in which a positive mass of households have

zero transitory income is not covered by the results below but its identification can be estab-

lished with more specific arguments.

The second part of assumption 1 ensures operator injectivity requirements demanded by

theorem 1 in Hu and Schennach (2008): they play a role similar to that of the relevance con-

dition in instrumental variables problems. The restrictions on characteristic functions can be

substantially weakened along the lines of Evdokimov and White (2012).

Theorem 2. Under assumption 1, the distributions

{
P
(η,σ2)

, Pυ2
, . . . , PυT−1

, Pε1
, . . . , PεT−1

, PυT+εT

}
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are identified provided T ≥ 5.

The proof of theorem 2 can be found in appendix A.

Nonparametric identification with lots of heterogeneity. The instrumental variables per-

spective of the identification argument offers insights into the identification of several other

models related to the HTR model. Consider replacing (3) by a permanent income process with

a unit-specific permanent income variance ς2
i ,

η̃it = η̃i,t−1 + ςiυit = ηi + ςi

t

∑
s=2

υis,

subject to the normalization E
[
ς2

i

]
= 1 — or, in the presence of covariates, E

[
ς2

i

∣∣∣xi

]
= 1. Even

allowing for dependence among ηi, ς2
i , and σ2

i , one can show, under restrictions similar to 1,

that P
(η,ς2,σ2)

is nonparametrically identified provided T ≥ 7. If, in addition to ς2
i , a unit-specific

persistence parameter ρi is included,

η̃it = ρiη̃i,t−1 + ςiυit = ρt−1
i ηi + ςi

t

∑
s=2

ρt−s
i υis,

my analysis suggests that T ≥ 9 is required to identify P
(η,ρ,ς2,σ2)

.11 The underlying idea is to

replace yi,(t−2):(t−1) by yi,(t−3):(t−1) and yi,(t−4):(t−1), yi,(t+1):(t+2) by yi,(t+1):(t+3) and yi,(t+1):(t+4),

and to expand (η̃it, σ2
i ) to (η̃it, ς2

i , σ2
i ) and (η̃it, ρi, ς2

i , σ2
i ) in each case. Invoking theorem 1 in Hu

and Schennach (2008) and imitating the steps in the proof to theorem 2 (appendix A), the results

follow. A rule-of-thumb is that, in order to identify k unit-specific parameters, T ≥ 2k + 1 is

required to reconstruct the instrumental variables idea.

The insights of the preceding paragraph are relevant to interpret the approach to lots of

heterogeneity proposed by Browning et al. (2010) and Alan et al. (2018). The income process of

both papers allows for 8 unit-specific parameters with essentially unconstrained dependence

among them. The rule-of-thumb above indicates that no less than 17 periods are required to

nonparametrically identify their distribution. Such a long time series dimension raises some

concerns of sample selectivity, as only the more stable and enduring households will provide

genuine information about the dependence between household-specific parameters.

11If it is identified at all. It is known that a one-error model with individual-specific intercept and autoregressive
coefficient is only set identified (see, e.g., Lee (2019)).
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4 Estimation

The nonparametric identification result is encouraging in that it reveals that few periods of

earnings observations are needed to determine the joint distribution of permanent income and

transitory income risk. It is natural to go on and formulate a flexible estimation approach to

capture the potential nonlinearities present in the relation between latent variables. I introduce

such an approach in this section.

My estimation approach is related to recent developments in the econometrics of latent

variables models (in particular, Arellano and Bonhomme (2016), Arellano et al. (2017), and

Arellano and Bonhomme (2019)) which exploit EM ideas combined with computer-simulation

techniques. From a statistical point of view, my estimation approach is based on sieve ideas

(see Chen (2007) for a complete treatment). I will construct a sequence of approximate models

which, in an inference theory, would portray increasing flexibility as the sample size grows.

4.1 Flexible specification

My estimation method relies on some simplifications. Let me define

hi ≡ ηi/ση(xi),

si ≡ ln(σi),

uit ≡ υit/συt
(xi), t = 2, . . . , T,

eit ≡ ε it/σεt
(xi), t = 1, . . . , T.

This way, hi, ui,2:T, and ei,1:T all have zero mean and unit variance, and si maps σi to the whole

real line. The first and most important simplification is the assumption

(hi, si) ⊥ ui2 ⊥ · · · ⊥ uiT ⊥ ei1 ⊥ · · · ⊥ eiT ⊥ xi.

In other words, the distributions of (ηi, σ2
i ), υi,1:T, and ε i,1:T do not depend on covariates xi

beyond second moments. The purpose of the simplification is to limit in a reasonable manner

the interaction between observable and unobservable sources of heterogeneity, interaction that

would demand a large number of parameters to be captured. Note that the interesting feature

of dependence between ηi and σ2
i is still permitted.

The second simplification is the stationarity of standardized permanent and transitory in-

come shocks, i.e., Put
= Pu (t = 2, . . . , T) and Pet

= Pe (t = 1, . . . , T) for a pair of probability
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distributions Pu and Pe (on the Borel sets of R). The assumption is similar in spirit to the first

simplification. Also notice that nonstationarity is allowed in first and second moments.

The parameter vector is now reduced to

θ =
{

µ1, . . . , µT, σ2
η , σ2

υ2
, . . . , σ2

υT
, σ2

ε1
, . . . , σ2

εT
, P(h,s), Pu, Pe

}
.

Observable heterogeneity. I model the mean and volatility functions as

µt(xi) = ϕ′µt
(xi)βµ,

ln(ση(xi)) = ϕ′η(xi)βη ,

ln(συt
(xi)) = ϕ′υt

(xi)βυ,

ln(σεt
(xi)) = ϕ′εt

(xi)βε,

where ϕµt
is a known function that maps xi to the relevant covariates for the mean of time-t log

income and similar considerations apply to ϕη , ϕυt
(t = 2, . . . , T), and ϕεt

(t = 1, . . . , T). The

only unknowns are collected into β = {βµ, βη , βυ, βε}. Flexibility of the model is controlled by

the dimension of the functions mapping covariates to regressors.

Unobserved heterogeneity. As for the latent variables distributions, I write

hi = Qη(Hi|γ),

si = Qσ(Si|hi, γ),

uit = Qυ(Uit|γ), t = 2, . . . , T,

eit = Qε(Eit|γ). t = 1, . . . , T,

where Qη(·|γ), Qσ(·|h, γ), Qυ(·|γ), and Qε(·|γ) are strictly increasing for almost every h and γ,

and known up to γ. The random variables Hi, Si, Ui,2:T, and Ei,1:T are uniformly distributed on

the interval (0, 1], and

Hi ⊥ Si ⊥ Ui2 ⊥ · · · ⊥ UiT ⊥ Ei1 ⊥ · · · ⊥ EiT(⊥ xi).

The way γ determines the quantile functions Qη , Qυ, and Qε is by piecewise-linear splines

(with exponential interpolation in the tails). Thus, γ contains the quantiles of hi, ui,2:T, and ei,1:T

at a grid of selected probabilities (and a pair of parameters for the tails).
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I specify the conditional distribution of si given hi as

Qσ(S|h, γ) = ϕ′σ(h)βσ(S, γ),

with ϕσ a known vector-valued function (orthogonal polynomials of different degrees) and βσ

another vector-valued function (piecewise-linear splines with exponential interpolation in the

tails too). Thus, γ also contains a matrix of quantile coefficient vectors at a grid of selected

probabilities (together with a pair of tail parameters). All details can be found in appendix B.

Flexibility of the model is controlled by the number of gridpoints in the piecewise-linear

spline approximation and by the dimension of the function ϕσ. My approach to modeling

distributions through quantile functions has its antecedents in Arellano and Bonhomme (2016)

and Arellano et al. (2017).

4.2 Estimation algorithm

In the specification, β and γ fully determine θ and, therefore, all the probability distributions

of observables and latent variables given covariates. The task is to construct good estimates

β̂ and γ̂. The method I recommend is divided in two steps, first producing β̂ and then γ̂ for

given β̂. Although in parametric and semiparametric setups efficiency considerations suggest

joint estimation of β and γ, the prescription does not generalize easily to flexible nonparametric

models. Sequential estimation of β and γ, in contrast, facilitates thinking about sequences of

increasingly flexible specifications.

Step 1: Estimating β (netting out). The standard in the empirical study of earnings uncer-

tainty is to fit a model of latent variables to residuals from a regression of log earnings on

covariates. The construction of such residuals is known as netting out. In the HTR model, β

is identified from conditional moment restrictions that do not involve γ, thereby enabling the

netting out step. Moreover, given my emphasis on understanding heterogeneity in transitory

income risk, it is natural to let the netting out mean, not just the construction of residuals, but

the determination of the role of covariates. In this step, I estimate βµ by least squares and βη ,

βυ, and βε by nonlinear least squares. The properties of this estimator and an instrumental

variables estimator (optimal in a semiparametric sense under correct specification of volatility

functions) are described in appendix B.
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Step 2: Estimating γ (stochastic EM). It would be conceptually possible to estimate γ by

maximizing the likelihood function of log earnings data conditional on covariates. Evaluation

of the likelihood function is, however, almost intractable in the flexible specification I propose.

For given γ (and β = β̂), simulation of latent variables from their conditional distribution given

data is, in fact, tractable and, therefore, resorting to a simulation-based deconvolution approach

is attractive. The implementation of this idea is a stochastic EM algorithm.

To describe the algorithm, let Ψ be a function of latent variables hi, si, ui,2:T, ei,1:T and γ such

that γ is identified by the unfeasible moment equations

0dim(Ψ)×1 = E
[
Ψ
(
hi, si, ui,2:T, ei,1:T, γ

)]
.

Algorithm 1. Initialize γ = γ(0) and, for iiter = 1, . . . , niter, alternate between the following:

(i) For each i = 1, . . . , n, draw a sequence of latent variables,

{
h(isim)

i , s(isim)
i , u(isim)

i,2:T , e(isim)
i,1:T

}nsim

isim=1
,

from the conditional distribution given yi,1:T implied by the values (β, γ) = (β̂, γ(iiter−1));

(ii) Update γ to γ(iiter) by solving the sample analog to the moment equations,

0dim(Ψ)×1 = En

[
Ensim

[
Ψ
(

h(isim)
i , s(isim)

i , u(isim)
i,2:T , e(isim)

i,1:T , γ(iiter)
)∣∣∣yi,1:T

]]
.

Detailed discussions of the two steps and some of the relevant inference theory are confined

to appendix B. Notice that the output of algorithm 1 is a sequence
{

γ(iiter)
}niter

iiter=1
. To form an

estimate of γ, I take γ̂ to be the average of the last terms in the sequence.

Remarks about the choice of estimation method. The inference theory for the class of non-

parametric latent variables models I am concerned with is, to a large extent, unexplored terri-

tory. In particular, no basis is available to derive estimators by appealing to concrete principles

of optimality (the prescriptions of which are likely to depend on the final object of interest). The

spirit of the literature, which I ascribe, is to provide a framework: a rule to map the data into

a collection of estimates for the latent variables distributions. Those estimates are later used as

the input in direct calculations of final objects of interest. In consequence, the objective of an

estimation framework is to attain reasonable statistical accuracy.
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As an alternative to optimality criteria, another principle consists of favoring the method

that mimics more directly the identification technique. This is one way to motivate deconvolu-

tion by characteristic-function methods (as in Horowitz and Markatou (1996), Bonhomme and

Robin (2010), Botosaru and Sasaki (2018), etc.). In the context of the HTR model, doing so is

not very attractive for two reaons: first, because the identification technique does not suggest a

simple implementation that would use all the restrictions of the model; second, because of the

probable presence of inverse ill-posed issues.

5 Empirical analysis

I am now in a position to address some of the empirical questions raised in the introduction

(section 1) about the nature of transitory risk and its link to permanent income. The first item

in the order of business is to decide what measurements in the data are to be treated as yit; in

other words, what is the concept of income to which the HTR model speaks.

Panel data. The Panel Study of Income Dynamics (PSID) plays a major role in the literature

on income processes. Its long time span, its design aimed at preserving representativity across

the years, and the large number of variables which are measured jointly with income and em-

ployment turn it into one of the finest data resources for the purposes of my study.12

I analyze two different types of datasets. The first is a collection of panels of households:

they are formed by family units in which the representative person is a married male and

income is interpreted as pre-tax labor earnings of the representative person and the spouse

plus transfers. The second is a panel of workers: it is formed by any family unit in which

the representative person earns labor income. In this second I focus on wages as opposed to

total labor income. Both labor income and wages are of interest since either one or the other is

taken to be the exogenous component of uncertainty behind household decision in quantitative

macroeconomic model and empirical analyses (cf. Blundell et al. (2008) and Blundell et al.

(2016)). Both offer complementary insights into the nature of uncertainty and insurance.

Most of the results I report below are based on a six-wave panel constructed with data gath-

ered between the 1999 and the 2009 interviews. In that period the survey was conducted once

every two years. I do so for a variety of reasons: first, because the most recent income data

are constructed using more stable definitions of income variables and more standard proce-

12This is despite recent concerns about the representativeness of the PSID in the recent waves, as measured by the
comparison between changes in the aggregate of PSID households and administrative data. See Bloom et al. (2019).
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dures to handle missing and inadequate responses; second, because the biennial framework

makes the assumption of serially uncorrelated transitory income shocks more plausible; third,

because the same period was considered in a number of papers in the literature (e.g., Blundell

et al. (2016) and Arellano et al. (2017)) and the comparison is of interest; finally, because for the

period, other labor market, consumption, and asset variables are available.

The complete set of tables and figures can be found in appendixes D (for household income)

and E (for worker wages). Below I emphasize the interpretation of a selection of the results. I

replicate some tables and figures for convenience. With the exception of one aside, I focus on

the panel of households and leave the parallel results for the panel of workers to appendix.

Measurement error. It is sometimes argued that measurement error is an important dimen-

sion of the PSID data. This has been discussed in a large number of papers (among them,

Gottschalk and Moffitt (2009)). For the purpose of this paper, there are many things to bear in

mind. First, one could calibrate the size of measurement error using available estimates from

validation data. Incorporating this into the estimation procedure would not be difficult.

Second, while there are good reasons to expect a household-specific scale of transitory in-

come changes, the same is not so clear for measurement error. Theorem 1 tells us that what

informs about the extent of heterogeneity in transitory risks and its relationship with perma-

nent income is the persistence in higher-order moments of the distribution of earnings scaled

down by an estimate of the variance of transitory income. If this variance is inflated (as it would

happen with classical measurement error) the results that follow from neglecting measurement

error are, in fact, a lower bound on the importance of heterogeneity.

Overall assessment of model restrictions. Here I report the covariance matrix of (net) log

earnings and the higher-order moments which are informative about (ηi, σ2
i ) according to theo-

rem 1. A first glance at table 1 seems favorable to the HTR model assumption of a random-walk

permanent component and white-noise transitory component. A quick back-of-the-envelope

calculation gives Var(ηi) ≈ 0.15, Var(υit) ≈ 0.01, and Var(ε it) ≈ 0.06, standard figures for this

model and data.

Table 2 is informative about Cov
(

ηi, σ2
i

)
. Except for two entries, the table suggests negative

correlation between ηi and σ2
i . Moreover, the entries that are not positive tend to agree on a

value around Cov
(

ηi, σ2
i

)
≈ −0.10. The disagreement between figures could be attributed to

sampling error. This I will address during the construction of diagnostics in section C.

Finally, table 3 informs about Var
(

σ2
i

)
. It suggests considerable dispersion of σ2

i and a
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value around Var
(

σ2
i

)
≈ 0.65. As with table 2, it is of interest to tell whether the differences

among figures are owed to sampling error, as I do in appendix C. The differences, however,

look remarkably small given the fact that they are based on higher-order moments which are

sensitive to outliers.

TABLE 1. Covariance matrix of yi,1:T

Row t1999 t2001 t2003 t2005 t2007 t2009

t1999 0.237 0.168 0.143 0.132 0.128 0.121
t2001 0.168 0.228 0.157 0.143 0.142 0.128
t2003 0.143 0.157 0.24 0.148 0.148 0.137
t2005 0.132 0.143 0.148 0.228 0.176 0.158
t2007 0.128 0.142 0.148 0.176 0.245 0.19
t2009 0.121 0.128 0.137 0.158 0.19 0.254

TABLE 2. Covariances between yit and (∆yiτ)
2/Var(∆εiτ)

Row t2003 t2005 t2007

t1999 0.023 -0.078 -0.101
t2001 -0.093 0.003
t2003 -0.086

TABLE 3. Covariances between (∆yit)
2/Var(∆εit) and (∆yiτ)

2/Var(∆εiτ)

Row t2003 t2005 t2007

t2001 0.629 0.664
t2003 0.846

From looking at tables 1, 2, and 3, one also gets the impression that the association between

ηi and σ2
i is negative (the regression coefficient is about −0.67) but there is considerable varia-

tion in σ2
i beyond what is predicted by a linear function of ηi (the mean squared error is about

90% of the variance of σ2
i ).
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5.1 Heterogeneity in transitory risks

Part of the heterogeneity in transitory income variances is a function of covariates. Given that

these functions are hard to estimate (their precisions depend on higher-order moments) and

in view of sample size I have allowed for a mild conditioning on covariates. In particular,

I have limited the conditional variance function to depend on age and education categories.

The results for households are displayed in table 4 and indicate that transitory income risk

decreases (slightly) with age and with education.

TABLE 4. Estimates of 100× βε

Row LSestimate LSstderr IVestimate IVstderr

constant -119.75 13.87 -96.93 15.33
representative person age -0.38 0.52 -1.17 0.43
representative person is high-school graduate -2.56 14.68 -26.33 15.31
representative person went to college 6.41 13.1 -19.58 13.86

It is of interest to get a sense of how much more heterogeneity there is in transitory income

risk beyond what is captured by age and education because in the calibration of quantitative

macroeconomic models there is typically a narrow amount of observable heterogeneity. One

indicator of the importance of such heterogeneity is the variance estimates that can be read

from table 3. However, this is not a very suitable indicator since transitory income volatilities

can only take on positive values and there is very little basis to form a prior on the shape of

its distribution. To assess this, I first display in figure 2 the distribution of σ2
i estimated by the

nonparametric method introduced in section 4.

FIGURE 2. PDF of σ2
i
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To report the combined effect of observable and unobserved heterogeneity I construct the
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quantity

σ̃2
i ≡

1
T

T

∑
t=1

σ2
εt
(xi)σ

2
i .

Its distribution is displayed in figure 3.

FIGURE 3. PDF of σ̃2
i

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

it

2

0

1

2

3

4

5

6

7

8

9

10

D
e
n
s
it
y

What is to be gathered from figures 2 and 3 is that most of the differences that I estimate in

transitory income risk are driven by the latent variable σ2
i . Heterogeneity after controlling for

covariates is paramount.

Furthermore, both the distributions of σ2
i and σ̃2

i display a large amount of asymmetry. In

both figures, the mean has been indicated with a dotted line. The mode and the median are

always well below the mean: a majority of households have small transitory income variations

while it is a minority who faces constantly large income risks.

Connection to other evidence. The current exercise is attractive because it identifies tran-

sitory changes with assumptions about its second-order persistence. Gottschalk and Moffitt

(2009) report the results from an alternative approach: they regard as transitory income changes

any difference in the income of a household with respect to the average of income observations

over the whole period. Translating that approach to my framework implies that the measure

used in that study mixes both permanent and transitory income changes. Gottschalk and Mof-

fitt (2009) find evidence of heterogeneity in the variance of transitory income according to their

measure, just as I do. But they find a positive effect of education. In my estimates, more

educated households have lower transitory income variances but higher permanent income

variances (perhaps capturing a more general model of trend) than less educated households.

The mixture of permanent and transitory income changes is an explanation for the differences
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in the estimated effect of education.

5.2 Permanent income and transitory risks

The second question one can address with estimates of the HTR model is how are permanent

income and transitory income risk related. The calculations made above suggested a nega-

tive relationship but with substantial scope for variation in transitory risks for each level of

permanent income. Figure 4 displays the joint density of (ηi, σ2
i ).

FIGURE 4. Joint PDF of ηi and σ2
i
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The negative association predicted is only slightly noticeable from the figure. To go further

in characterizing the relationship and its strength, I report, in figure 5, a selection of conditional

quantiles of σ2
i for each level of ηi.

FIGURE 5. Conditional quantile function of σ2
i given ηi
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Both the negative relationship and the fact that it is no overwhelmingly strong appear as

evident. The novelty is that the relationship is nonlinear and it might turn around at high
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values of ηi. This shows how a nonparametric approach can be very revealing in this context

where both the shape of the marginal distribution of σ2
i and its conditional distribution given

ηi are unknown and there is little basis to form a prior on them.

The nature of the negative relationship. Determining the causes behind the negative rela-

tionship between permanent income and transitory risk is well beyond the scope of this paper.

However, one must notice that this is compatible with a number of models in which work-

ers possess firm-specific capital. In turn, heterogeneity must be large at the beginning of the

working life of individuals: if all workers were ex ante identical and jobs were a once-and-for-all

choice, larger permanent income should compensate larger transitory risks as in mean-variance

frontier models.

Age versus calendar time. With the random-walk specification, the link between permanent

income and transitory risk vanishes as time passes owing to the accumulation of permanent

income shocks. In the panel I constructed, this has happened to some older units and it would

be of interest to quantify the implied relationship at the beginning of the working life. In the

appendix D I report a figure that gives some hint towards the view that the relationship is

stronger: I analyze the joint distribution of η̃i and σ̃2
i where I have defined

η̃i ≡
T

∑
t=1

µt(xi) + ηi.

Because in some way, age is included in xi, the correlation between η̃i and σ̃2
i can be thought of

as conditioning on age. One could certaintly reconstruct the implied correlation at the begin-

ning of the working life from these quantities.

5.3 Marginal distributions of shocks

A recurrent finding in nonparametric deconvolution approaches applied to earnings dynam-

ics is that, while the permanent component is approximately normally distributed, shocks to

transitory income are highly nonnormal. This is the case, e.g., in Arellano et al. (2017). Because

the HTR model implies that transitory income shocks are in fact a mixture, the question arises

whether part of the nonnormality is just a sign of a household-specific variance. To investigate

that issue, I show figure 6.

Comparing the marginal distributions of ε it and ε̃ it one observes that part of (but not all)
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FIGURE 6. PDFs of ηi, υit, εit, and σiεit
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the nonnormality can be attributed to σi: there is some genuine skewness and excess kurtosis

in ε it but the departure from normality is not large (see appendix D).

5.4 Trends in the distribution of transitory risk

Many papers have documented a rapid rise in the variance of transitory income shocks during

the 70s and 80s. An overview of the evidence is given by Gottschalk and Moffitt (2009). It is

natural in this context to apply the HTR model to a sequence of panels around the period, to

measure changes along the whole distribution of transitory risks and not just in the average.

The PSID provides the resources to do so. I construct a sequence of six-wave overlapping

panels starting from 1972-1977 up to 1988-1993. The results are displayed in figures 7 and 8.

FIGURE 7. Evolution of the marginal distribution of σ2
i
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Figure 7, reports the evolution of the quantiles of σ2
i across time. Each panel is associated

with the middle year (for comparability with Gottschalk and Moffitt (2009)). Here σ2
i is the

heterogeneity in transitory income risk controlling for covariates that may influence the vari-

ance of transitory income. It is normalized to have unit mean in every period (so that I am

“controlling” for a time effect too).
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FIGURE 8. Evolution of the marginal distribution of σ̃2
i
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Figure 8, in turn, reports the evolution of the quantiles of σ̃2
i across time, that is, bringing

in the effect of covariates. Comparing figures 7 and 8 one sees that an upward trend becomes

evident when covariates are allowed for. This agrees with the idea, pushed in the literature,

that the premium to education played a role in broadening differences across workers. The

distribution of σ2
i seems qualitatively stable and, if anything, upper quantiles tend to display a

slightly positive slope over time compared to lower quantiles which remain constant or even

decrease.

5.5 Transitory income risk and labor market variables

As the evidence of heterogeneity in transitory income risk is strong, a task will turn out to be

to find explanations for it. Because I have added some covariates as controls, tentative expla-

nations must rely on other dimensions of workers and jobs to account for the large differences

I uncover.

I do not attempt to undertake such a formidable task here. Instead, one thing that can be

done withing the framework of this paper is to measure the predictive power of certain outside

covariates on σ2
i . To do so, I focus on the panel of workers and use extensive information

on labor market variables collected by the PSID. This includes indicators of unemployment

and self-employment (which may be taken to proxy a more ideal indicator of labor-market

attachment), whether the worker has a contract under a union, whether the worker is salaried

or paid by the hour, occupation, and sector. The results are given in table 5.

TABLE 5. Regression of ln(σi) on labor market variables

Attachment to the labor market appears to contribute substantially to transitory income
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risk, much more than differences across occupations and sectors.

5.6 Passthrough of income shocks to consumption

The HTR model shocks allow me to estimate passthrough coefficients that describe the trans-

mission of income shocks to consumption. The PSID collects extensive data on household

spending since 1999, thus providing the means to carry out this exercise.

It is of particular interest to compare the coefficients obtained by regressing consumption

growth on two different notions of transitory shock, namely: ε̃ it and ε it. The first is a notion

of transitory income shock that disregards the presence of heterogeneity in transitory income

risk. The second is a notion of transitory shock that better describes the uncertainty faced by

the household. To be specific, my objective is to estimate φtran in the regression

∆c̃it = φperm · Perm. shockit + φtran · Tran. shockit + errorit.

Here, c̃it denotes log consumption of household i during time t net of a conditional mean func-

tion of covariates xi.

There has been some debate about the discrepancy usually observed between estimates of

φtran obtained from quasi-experimental evidence and those from semi-structural approaches

(see, e.g., Commault (2018)).

TABLE 6. Regression of ∆c̃it on permanent and transitory shocks

HeterogeneityIn HeterogeneityOut

permanent shock 0.3513 0.3427
transitory shock -0.0016 0.1829

Table 6 reports estimates of φperm and φtran. It is seen that the estimate that relies on ε̃ it

is negligible (and even negative) while the estimate which uses ε it indicates some response of

consumption to a transitory income shock. One interpretation for the difference in estimates

might lie in the correlation between ∆c̃it and ε̃ it induced by the presence of σi.
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6 Conclusion

This paper has developed a new framework to separate permanent and transitory components

of variation in income in a way that permits flexible forms of dependence between them. With

a modeling perspective, the central idea is to introduce dependence through time-invariant

heterogeneity. I then give a tractable approach to nonparametric identification and estimation

of the joint distribution of latent variables. The approach seems attractive in a wide range of

applications other than income processes, such as in recent models of firm productivity.

With a substantive perspective, the large differences I find in transitory income variances

across households and workers are relevant to quantitative macroeconomic exercises. Correct

calibration of earnings uncertainty as part of a larger macro model is determinant for the ex ante

evaluation of policies. Researchers know this and, in practice, allow for certain forms of observ-

able heterogeneity (by, e.g., grouping by education levels). The evidence I present suggests a

substantial extent of heterogeneity left after controlling for covariates while my estimates pro-

vide an alternative calibration that accounts for that.

With a methodological perspective, the nonparametric techniques I introduce are useful

to uncover the nonlinear relationship between permanent income and transitory income risk.

Simulation evidence indicates good performance in realistic sample designs. Yet the inference

theory is incomplete. An asymptotic theory in which the flexibility of the specification of co-

variate functions and latent variables distributions are indexed to the sample size would be

useful to understand the trade-offs implied by such choices. Alternative ways to construct es-

timates and tests when higher-order moments (which are sensitive to outliers) are involved

appear of interest too. These are natural steps in a future research agenda.
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A Proofs and derivations

A.1 Stylized example

Consider a two-period version of the HTR model:

yi1 = ηi + σiε i1,

yi2 = ηi + υi2 + σiε i2.

with ηi, υi2, ε i1, and ε i2 independent and identically distributed as N(0, 1). They are assumed

independent of the individual-specific variance σ2
i , which has a discrete distribution,

π = P[σi = σH] = 1−P[σi = σL] .

Here σH > σL and to simplify I assume π = 1/2. The conditional distribution of yi,1:2 given σi

is a bivariate normal distribution,yi1

yi2

 ∣∣∣∣ σi ∼ N

02×1,

1 + σ2
i 1

1 2 + σ2
i

 .

The conditional distribution of yi2 given yi1 and σi is also normal,

yi2
∣∣ yi1, σi ∼ N

(
βiyi1, s2

i

)
where βi = (1+ σ2

i )
−1 and s2

i = 2+ σ2
i − βi. With obvious notation, βH < βL and s2

H > s2
L. This

expresses the intuition that for an individual with high σi, the link between income at time t

and income at t + 1 is weaker.

In turn, the distribution of σi conditioned on yi1 is discrete,

π(y) = P[σi = σH|yi1 = y] = 1−P[σi = σL|yi1 = y]

=

{
1 +

√
1 + σ2

H

1 + σ2
L

exp

[
− (σH + σL)(σH − σL)

(1 + σ2
H)(1 + σ2

L)

y2

2

]}−1

.

The conditional probability π(y) has a minimum of
(

1 + (1 + σ2
H)

1/2/(1 + σ2
L)

1/2
)−1

< 1/2 at

y = 0 and is continuous and increasing as a function of y2. The intuition is that an observation

of a large y2
i is most favorable to the view that σi = σH than to σi = σL. By symmetry, π(y) =
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π(−y), all y, and by continuity, there is ȳ > 0 such that π(ȳ) = π(−ȳ) = 1/2.

It follows that the distribution of yi2 given yi1 is a normal mixture,

yi2
∣∣ yi1 ∼ π(yi1)N

(
βHyi1, s2

H

)
+ (1− π(yi1))N

(
βLyi1, s2

L

)
.

Let me measure the asymmetry of the distribution of yi2 conditioned on yi1 by the difference

between the mean and the median, i.e.,

asym [yi2 | yi1] = E[yi2|yi1]−med [yi2 | yi1] ,

= β(yi1)yi1 − q(yi1, 1/2),

with β(y) = π(y)βH + (1− π(y))βL and q(y, τ) the τ-th conditional quantile of yi2 given yi1 =

y.

The point of my example is to show that asym [yi2 | yi1] decreases with yi1. Computation of

the asymmetry measure can be made explicitly at y = −ȳ, y = 0, and y = ȳ.

One can see that asym [yi2 | yi1 = 0] = 0 by looking at E[yi2|yi1 = y] = β(y)y and the CDF

P
[
yi2 ≤ y′

∣∣yi1 = y
]
= π(y)Φ

(
y′ − βHy

sH

)
+ (1− π(y))Φ

(
y′ − βLy

sL

)
.

When y = 0, setting y′ = 0 delivers P
[
yi2 ≤ y′

∣∣yi1 = y
]
= 1/2.

Notice that the conditional quantile function satisfies, for all y and τ,

π(y)Φ
(

q(y, τ)− βHy
sH

)
+ (1− π(y))Φ

(
q(y, τ)− βLy

sL

)
= τ.

For ȳ, in light of π(ȳ) = 1/2 and the symmetry of the normal distribution,

Φ
(

q(ȳ, 1/2)− βHȳ
sH

)
= Φ

(
βLȳ− q(ȳ, 1/2)

sL

)
,

and, because Φ is bijective, one can equate the arguments and solve for q(ȳ, 1/2),

q(ȳ, 1/2) =
[

sL

sH + sL
βH +

sH

sH + sL
βL

]
ȳ ≥ β(ȳ)ȳ.

Thus, asym [yi2 | yi1 = ȳ] < 0. By a similar calculation, asym [yi2 | yi1 = −ȳ] > 0. �
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A.2 Theorem 1

Proof of theorem 1. (i) Choose t and τ in such a way that τ > t + 1, yit and (∆yiτ)
2 are

observed (i.e., 1 ≤ t < τ ≤ T), and Var(∆ε iτ) = Var
(
ε i,τ−1

)
+ Var(ε iτ) is identified. Provided

T ≥ 4, such a choice is possible. Then, since

yit = ηi +
t

∑
s=2

υis + σiε it,

(∆yiτ)
2 = υ2

iτ + 2σiυiτ∆ε iτ + σ2
i ∆ε iτ,

it is seen, after some calculations, that

Cov
(

yit, (∆yiτ)
2
)
= Cov

(
ηi, σ2

i

)
Var(∆ε iτ) .

(ii) Choose t and τ so that τ > t + 1, (∆yit)
2 and (∆yiτ)

2 are observed (i.e., 1 < t < τ ≤ T), and

both Var(∆ε it) = Var
(
ε i,t−1

)
+ Var(ε it) and Var(∆ε iτ) = Var

(
ε i,τ−1

)
+ Var(ε iτ) are identified.

Provided T ≥ 5, this is possible. Then, since

(∆yit)
2 = υ2

it + 2σiυit∆ε it + σ2
i ∆ε it,

(∆yiτ)
2 = υ2

iτ + 2σiυiτ∆ε iτ + σ2
i ∆ε iτ,

it follows that

Cov
(
(∆yit)

2, (∆yiτ)
2
)
= Var

(
σ2

i

)
Var(∆ε it)Var(∆ε iτ) ,

and the proof is complete. �

A.3 Theorem 2

Let t be such that 1 ≤ t− 2 < t + 2 ≤ T. I will first establish identification of the conditional

distributions Py(t−2):(t−1)|(η̃t,σ
2)

and P
(η̃t,σ

2)|y(t+1):(t+2)
. Note that the first part of assumption 1 im-

plies assumption 1 in Hu and Schennach (2008), while the second part implies their assumption

3.

Their assumption 2 is implied by the following conditional independence properties:

yit ⊥ (yi,(t−2):(t−1), yi,(t+1):(t+2))
∣∣ (η̃it, σ2

i ) and yi,(t−2):(t−1) ⊥ yi,(t+1):(t+2)
∣∣ (η̃it, σ2

i ).
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To verify them, notice that

yi,t−2 = η̃i,t−2 + σiε i,t−2,

yi,t−1 = η̃i,t−1 + σiε i,t−1,

yit = η̃it + σiε it,

yi,t−2 = η̃it + υi,t+1 + σiε i,t+1,

yi,t+2 = η̃it + υi,t+1 + υi,t+2 + σiε i,t+2.

Since ε it ⊥ (ε i,(t−2):(t−1), ε i,(t+1):(t+2), η̃i,(t−2):t, υi,(t+1):(t+2), σi) the first conditional independence

is obtained. The second follows from (ε i,(t−2):(t−1), η̃i,(t−2):t) ⊥ (ε i,(t+1):(t+2), υi,(t+1):(t+2)).

Let p denote the density of a generic measure P. By similar calculations to (7) and (8),

E
[
yit

∣∣∣η̃it, σ2
i

]
= µt + η̃it,

Var
(

yit

∣∣∣η̃it, σ2
i

)
= σ2

i σ2
εt

.

It is legitimate to treat µt and σ2
εt

as known owing to the observations made at the beginning of

section 3 (note t < T). Thus, for every (η̃, σ2) and (η̃′, σ2′) such that (η̃, σ2) 6= (η̃′, σ2′),

Pyt

[
pyt|(η̃t,σ

2)

(
yit

∣∣∣η̃, σ2
)
6= pyt|(η̃t,σ

2)

(
yit

∣∣∣η̃′, σ2′
)]

> 0,

leading to assumption 4 in Hu and Schennach (2008).

Finally, let the functional F map the space of conditional densities py(t−2):(t−1)|(η̃t,σ
2)

onto R×
R≥0 by the rule

{
F
[

py(t−2):(t−1)|(η̃t,σ
2)

(
·
∣∣∣η̃, σ2

)]}
(1,1)

=
∫

R
2

yt−1 py(t−2):(t−1)|(η̃t,σ
2)

(
(yt−2, yt−1)

∣∣∣η̃, σ2
)

d(yt−2, yt−1)

for the first entry and

{
F
[

py(t−2):(t−1)|(η̃t,σ
2)

(
·
∣∣∣η̃, σ2

)]}
(2,1)

=
1

σ2
εt−1

×{∫
R

2
(yt−1 − η̃)2 py(t−2):(t−1)|(η̃t,σ

2)

(
(yt−2, yt−1)

∣∣∣η̃, σ2
)

d(yt−2, yt−1)− σ2
υt

}
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for the second. Then,

F
[

py(t−2):(t−1)|(η̃t,σ
2)

(
·
∣∣∣η̃, σ2

)]
=

 η̃

σ2

 for all (η̃, σ2) ∈ supp
(
(ηi, σ2

i )
)

and assumption 5 in Hu and Schennach (2008) is satisfied.

All conditions for theorem 1 in Hu and Schennach (2008) are met and deliver the following:

Lemma 1. Under assumption 1, the distributions

{
Pyt|(η̃t,σ

2)
, Py(t−2):(t−1)|(η̃t,σ

2)
, P

(η̃t,σ
2)|yi,(t+1):(t+2)

}
are identified provided T ≥ 5.

Proof of theorem 2. By lemma 1, the distribution P
(η̃t,σ

2)
and the marginal distributions

Pη̃t
and P

σ2 are identified — integrate the density of P
(η̃t,σ

2)|y(t+1):(t+2)
against the distribution

Py(t+1):(t+2)
. Since Py(t−2):(t−1)|(η̃t,σ

2)
is identified, so is P

(y(t−2):(t−1),η̃t)|σ
2 and applying to the latter the

celebrated lemma of Kotlarski (1967) a number of times the identification of

{
P
(η,σ2)

, Pυt−2
, Pυt−1

, Pεt−2
, Pεt−1

}
is established. Application of the lemma is possible owing to the second part of assumption 1.

By similar arguments, the distribution P
(y(t+1):(t+2),η̃t)|σ

2 is identified and applying again the

lemma of Kotlarski (1967) the identification of

{
Pυt+1

, Pεt+1
, Pυt+2+εt+2

}
follows. Finally, repeat the reasoning for every t = 3, . . . , T − 2 to finish the proof. �
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B Details of estimation

B.1 Estimation of β

Observe the conditional moments (similar to (7) and (8)),

0T×1 = E
[
y′i,1:T −mi(βµ)

∣∣∣xi

]
,

0T(T+1)/2×1 = E
[
vech y′i,1:Tyi,1:T −mi(βµ)m

′
i(βµ)− Si(βη , βυ, βε)

∣∣∣xi

]
,

where, specifying µt, σ2
η , σ2

υt
(t = 2, . . . , T), and σ2

εt
(t = 1, . . . , T) as I explained above,

mi(βµ) ≡


µ1(xi)

...

µT(xi)

 ,

Si(βη , βυ, βε) ≡


σ2

η(xi) + σ2
ε1
(xi) . . . σ2

η(xi)
...

. . .
...

σ2
η(xi) . . . σ2

η(xi) + ∑T
s=2 σ2

υs
(xi) + σ2

εT
(xi)

 .

Many unconditional moment restrictions may be derived. Here I discuss some of them.

Prediction problems. It is attractive to give βµ, βη , βυ, and βε a role in a set of prediction

problems as it provides a natural way to measure goodness of fit. Particularly for βη , βυ, and

βε, a prediction problem interpretation is an appealing way to choose weights for the many un-

conditional moments that could originate in the conditional moments of above and generalizes

more easily to nonparametric series estimation—the avenue one would take in a larger dataset.

For the parameters βµ, note the moment conditions

E
[
ET

[
ϕµt

(xi)
(

yit − ϕ′µt
(xi)βµ

)]]
= 0dim(βµ)×1.

They lead to the sample moment moment equations

En

[
ET

[
ϕµt

(xi)
(

yit − ϕ′µt
(xi)β̂µ

)]]
= 0dim(βµ)×1,
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which is equivalent to the statement that β̂µ solves a standard linear least squares problem,

β̂µ ≡ argmin βµEn

[
ET

[(
yit − ϕ′µt

(xi)βµ

)2
]]

.

Let ỹit ≡ yit − ϕ′µt
(xi)βµ denote log earnings net of their mean conditional on covariates. In all

that follows, replacing ỹit by yit − ϕ′µt
(xi)β̂µ does not affect the consistency of the estimators

under an asymptotic regime with fixed parametric specification.

For the parameters βη , I use moments which are proportional to the first order conditions

of a nonlinear least squares problem,

E

[
T

∑
t=2

ϕη(xi) exp
{

ϕ′η(xi)βη

}
·
(

ỹi1ỹit − exp
{

ϕ′η(xi)βη

})]
= 0dim(βη)×1.

Therefore, β̂η satisfies

β̂η ≡ argmin βηEn

[
T

∑
t=2

(
ỹi1ỹit − exp

{
ϕ′η(xi)βη

})2
]

.

That is, β̂η is set so that σ2
η(xi) matches Cov(ỹi1, ỹit|xi) with equal weights for t = 2, . . . , T.

The parameters βυ and βε are also estimated by exploiting moments related to nonlinear

least squares problems. For βυ, I use

E

[
T−1

∑
τ=2

T

∑
t=τ+1

ϕυτ
(xi) exp

{
ϕ′υτ

(xi)βυ

}
·
(

∆ỹiτ ỹit − exp
{

ϕ′υτ
(xi)βυ

})]
= 0dim(βυ)×1.

Thus,

β̂υ ≡ argmin βυEn

[
T−1

∑
τ=2

T

∑
t=τ+1

(
∆ỹiτ ỹit − exp

{
ϕ′υτ

(xi)βυ

})2
]

.

And for βε, I use

E

[
T−1

∑
τ=1

T

∑
t=τ+1

ϕετ
(xi) exp

{
ϕ′ετ

(xi)βε

}
·
(

ỹiτ(ỹit − ỹiτ)− exp
{

ϕ′ετ
(xi)βε

})]
= 0dim(βε)×1.

Thus,

β̂ε ≡ argmin βεEn

[
T−1

∑
τ=1

T

∑
t=τ+1

(
ỹiτ(ỹit − ỹiτ)− exp

{
ϕ′ετ

(xi)βε

})2
]

.
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In an asymptotic regime in which conditional means and variances are correctly specified, and

T, dim(βµ), dim(βη), dim(βυ), and dim(βε) are fixed, as n→ ∞,

β̂µ

p−→ βµ,

β̂η

p−→ βη ,

β̂υ

p−→ βυ,

β̂ε

p−→ βε.

Moreover,
{

β̂µ, β̂µ, β̂µ, β̂µ

}
are normally distributed in large samples and bootstrap computa-

tions of standard errors and confidence intervals are valid. This is what I do in the empirical

analysis of the paper.

Alternative asymptotics in which dim(βµ), dim(βη), dim(βυ), and dim(βε) grow with the

sample size are not addressed here, although they would be of interest if my approach were

extended to series estimation in a larger dataset (such as in administrative data).

Optimal instruments. The conditional moments also deliver the optimal unconditional mo-

ment restrictions for an estimation problem that takes the conditional mean and variance func-

tions as correct with fixed dim(βµ), dim(βη), dim(βυ), and dim(βε). These can be obtained

by the method in Chamberlain (1987). I employ the two conditional moments separately to

construct (restricted) optimal instruments for βµ and βσ ≡ (β′η , β′υ, β′ε)
′.

For βµ, the optimal moment condition reduces to the familiar GLS problem, i.e.,

E
[

ϕµ(xi) {Si(βσ)}
−1
(

y′i,1:T −mi(βµ)
)]

= 0dim(βµ)×1.

For βσ,

E

[
∂ vech Si(βσ)

′

∂βσ
{Ki(βσ, γ)}−1 (vech ỹ′i,1:T ỹi,1:T − Si(βσ)

]
= 0dim(βσ)×1.

Here Ki(βσ, γ) ≡ Var
(
(vech ỹ′i,1:T ỹi,1:T − Si(βσ)

∣∣xi
)

is a matrix of conditional fourth moments.

Both the gradients and this matrix are available in closed form. The estimators are obtained

as numerical solutions to nonlinear equations plugging initial estimates of βσ and γ into the

gradients and conditional variance matrices.

As with least squares estimators, it is not hard to show consistency, asymptotic normality,

and validity of bootstrap calculations. Notice that since these estimators exploit the condi-
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tional moments separately, they can be improved by estimators that use them jointly. An open

question is whether these estimators would remain optimal if dim(βµ), dim(βη), dim(βυ), and

dim(βε) were allowed to grow.

B.2 Estimation of γ

Specification. I begin by providing detail on the form of marginal and conditional quantile

functions for the latent variables. Consider a grid of points such that 0 < τ1 ≤ · · · ≤ τnτ
< 1.

Then,

Qη(H|γ) = 1{H ≤ τ1}
(

γη,1 − γη,left ln
(

1− H
τ1

))
+

nτ

∑
iτ=2

1
{

τiτ−1 < H ≤ τiτ

}(
γη,iτ−1 +

(
H − τiτ−1

τiτ
− τiτ−1

)
(γη,iτ

− γη,iτ−1)

)

+ 1
{

τnτ
< H

}(
γη,nτ

+ γη,right ln

(
H − τnτ

1− τnτ

))

is the quantile function of hi.

Qυ(U|γ) = 1{U ≤ τ1}
(

γυ,1 − γυ,left ln
(

1− U
τ1

))
+

nτ

∑
iτ=2

1
{

τiτ−1 < U ≤ τiτ

}(
γυ,iτ−1 +

(
U − τiτ−1

τiτ
− τiτ−1

)
(γυ,iτ

− γυ,iτ−1)

)

+ 1
{

τnτ
< U

}(
γυ,nτ

+ γυ,right ln

(
U − τnτ

1− τnτ

))
,

is the quantile function of uit (t = 2, . . . , T).

Qε(E|γ) = 1{E ≤ τ1}
(

γε,1 − γε,left ln
(

1− E
τ1

))
+

nτ

∑
iτ=2

1
{

τiτ−1 < E ≤ τiτ

}(
γε,iτ−1 +

(
E− τiτ−1

τiτ
− τiτ−1

)
(γε,iτ

− γε,iτ−1)

)

+ 1
{

τnτ
< E

}(
γε,nτ

+ γε,right ln

(
E− τnτ

1− τnτ

))
,

is the quantile function of eit (t = 1, . . . , T).
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For si, I use

Qσ(S|h, γ) = 1{S ≤ τ1}
(

ϕ′σ(h)γσ,1 − γσ,left ln
(

1− S
τ1

))
+

nτ

∑
iτ=2

1
{

τiτ−1 < S ≤ τiτ

}(
ϕ′σ(h)γσ,iτ−1 +

(
S− τiτ−1

τiτ
− τiτ−1

)
ϕ′σ(h)(γσ,iτ

− γσ,iτ−1)

)

+ 1
{

τnτ
< S

}(
ϕ′σ(h)γσ,nτ

+ γε,right ln

(
S− τnτ

1− τnτ

))
.

The parameter γ consists of the three nτ-dimensional vectors γη,1:nτ
, γυ,1:nτ

, and γε,1:nτ
, the

nτ × dim(ϕσ) matrix γ′σ,1:nτ
, and the tail parameters γη,left, γη,right, γυ,left, γυ,right, γε,left, γε,right,

γσ,left, and γσ,right.

The parameter space Γ is the set of all vectors γ such that hi, ui,2T
, and ei,1:T have zero mean

and unit variance, and exp(2si) has unit mean. An element of Γ can be obtained from any

arbitrary vector γ by shifting and rescaling γη,1:nτ
, and γη,left, γη,right (to normalize hi), γυ,1:nτ

,

γυ,left, and γυ,right (to normalize ui,2:T), γε,1:nτ
, γε,left, and γε,right (to normalize ei,1:T), and the first

column of γ′σ,1:nτ
(to normalize si).

EM principle. If latent variables were observed, γ would be determined by a collection of

quantile computations and regressions. Let

Ψτ,i(γ) = Ψτ

(
hi, si, ui,2:T, ei,1:T, γ

)
≡


ψτ

(
hi −Qη(τ|γ)

)
ψτ (si −Qσ(τ|hi, γ))

∑T
t=2 ψτ (uit −Qυ(τ|γ))

∑T
t=1 ψτ (eit −Qε(τ|γ))

 ,

where ψτ(z) ≡ τ − 1{z < 0}, be defined for τ ∈ (0, 1). A equivalent statement is to say that,

for selected values of τ, the parameter γ is identified from the moment equation

04×1 = E
[
Ψτ,i(γ)

]
.

To deal with the fact that latent variables are unobserved, one can use the EM principle: apply

the law of iterated expectations to obtain

04×1 = E
[
E
[
Ψτ,i(γ)

∣∣yi,1:T
]]

.
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But direct evaluation of the conditional expectation E
[
Ψτ,i(γ)

∣∣yi,1:T
]

is challenging and the idea

will be to replace it by an average across simulations,

Ensim

[
Ψ(isim)

τ,i (γ)
∣∣∣yi,1:T

]
≡ 1

nsim

nsim

∑
isim=1

Ψτ

(
h(isim)

i , s(isim)
i , u(isim)

i,2:T , e(isim)
i,1:T , γ

)
,

where h(isim)
i , s(isim)

i , u(isim)
i,2:T , e(isim)

i,1:T are drawn from the conditional distribution P(h,s,u2:T ,e1:T)|y1:T
. It

is seen that the replacement of the conditional expectation by the simulation average does not

invalidate the moment condition,

04×1 = E
[
Ensim

[
Ψ(isim)

τ,i (γ)
∣∣∣yi,1:T

]]
.

Algorithm 1 implements this idea by alternating between the simulation of latent variables

(E-Step) and the solution of moment equations (M-Step). The M-Step is a fairly standard set

of quantile computations. In what remains of this appendix, I explain the E-Step. The EM

approach I follow is closely connected to Arellano and Bonhomme (2016), Arellano et al. (2017),

and Arellano and Bonhomme (2019).

Simulating latent variables. To carry out the E-Step of the algorithm, one would need to

simulate hi, si, ui,2:T, and ei,1:T from their conditional distribution given yi,1:T for a fixed value

of γ (xi and β too). Notice that drawing from e1:T is not necessary once hi, si, ui,2:T, and yi,1:T are

known (together with xi and β). Hence, I need to draw from the density

p(h,s,u2:T)|y1:T

(
hi, si, ui,2:T

∣∣yi,1:T
)

.

By Bayes rule,

p(h,s,u2:T)|y1:T

(
hi, si, ui,2:T

∣∣yi,1:T
)

∝ py1:T |(h,s,u2:T)

(
yi,1:T

∣∣hi, si, ui,2:T
)
× p(h,s,u2:T)

(
hi, si, ui,2:T

)
=

[
T

∏
t=1

pyt|(h,s,u2:t)

(
yit
∣∣hi, si, ui,2:t

)]

× ps|h(si|hi)ph(hi)

[
T

∏
t=2

put
(uit)

]

∝

 T

∏
t=1

e−si pe

yit −
(

ση(xi)hi + ∑t
τ=2 συτ

(xi)uiτ

)
esi σεt

(xi)
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× ps|h(si|hi)ph(hi)

[
T

∏
t=2

pu(uit)

]

The densities ph,ps|h, pu, and pe are fully determined by γ (notice pu and pe do not depend on

t). They are piecewise constant functions with exponential tails, i.e.,

ph(h) = ph(h|γ) = 1
{

h ≤ γη,1

}( τ1

γη,left
exp

(
h− γη,1

γη,left

))

+
nτ

∑
iτ=2

1
{

γη,iτ−1 < h ≤ γη,iτ

}( τiτ
− τiτ−1

γη,iτ
− γη,iτ−1

)

+ 1
{

γη,nτ
< h

}(1− τnτ

γη,right
exp

(
γτnτ
− h

γη,right

))
,

pu(u) = pu(u|γ) = 1
{

u ≤ γυ,1
}( τ1

γυ,left
exp

(
u− γυ,1

γυ,left

))
+

nτ

∑
iτ=2

1
{

τiτ−1 < u ≤ τiτ

}( τiτ
− τiτ−1

γυ,iτ
− γυ,iτ−1

)

+ 1
{

γυ,nτ
< u

}(1− τnτ

γυ,right
exp

(
γτnτ
− u

γυ,right

))
,

pe(e) = pe(e|γ) = 1
{

e ≤ γε,1
}( τ1

γε,left
exp

(
e− γε,1

γε,left

))
+

nτ

∑
iτ=2

1
{

τiτ−1 < e ≤ τiτ

}( τiτ
− τiτ−1

γε,iτ
− γε,iτ−1

)

+ 1
{

γε,nτ
< e
}(1− τnτ

γε,right
exp

(
γτnτ
− e

γε,right

))
,

and

p(s|h) = ps|h(s|h, γ) = 1
{

s ≤ ϕ′σ(h)γσ,1
}( τ1

γσ,left
exp

(
s− ϕ′σ(h)γσ,1

γσ,left

))

+
nτ

∑
iτ=2

1
{

τiτ−1 < s ≤ τiτ

}( τiτ
− τiτ−1

ϕ′σ(h)(γσ,iτ
− γσ,iτ−1)

)

+ 1
{

ϕ′σ(h)γσ,nτ
< s
}(1− τnτ

γσ,right
exp

(
ϕ′σ(h)γσ,nτ

− s
γσ,right

))
.

With a function proportional to the conditional density at hand it is straightforward to employ

Markov Chain Monte Carlo (MCMC) methods. The one of my choice for this application is a

univariate slice sampling techniques (see Neal (2003)). The test suggested by Geweke (2004)
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indicates excellent performance of the conditional distribution simulation algorithm.

Inference. The inference theory is known for a γ of fixed dimension. In that case, the estima-

tor obtained by stochastic EM is (in the limit ideal of infinitely many simulations) asymptoti-

cally normally distributed and the bootstrap gives valid measures of precision. For the results

of the paper, bootstrap calculations for objects that rely on estimates of γ are reported in a sep-

arate appendix. Nonetheless, an asymptotic theory in which the dimension of γ grows with

the sample size is an open question and an interesting avenue for future research.
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C Tests of model restrictions

Theorem 1 suggests an intuitive set of model restrictions that could be exploited to construct a

diagnostic. Namely,

Cov
(

ηi, σ2
i

)
=

Cov
(

yit, (∆yiτ)
2
)

Var(∆ε iτ)
, t = 1, . . . , T − 3, τ = t + 2, . . . , T − 1,

Var
(

σ2
i

)
=

Cov
(

∆y2
it, ∆y2

iτ

)
Var(∆ε it)Var(∆ε iτ)

, t = 2, . . . , T − 3, τ = t + 2, . . . , T − 1.

Starting from T ≥ 5, there are r = (T− 3)2 − 2 testable restrictions. These can be written in the

form of moment equations

E[ρi] = 0r×1.

Using that, under bounded second moments of ρi,

√
n {Var(ρi)}

− 1
2 En[ρi] =⇒ N (0r×1, Ir) ,

the test that rejects the HTR model restrictions when

nEn
[
ρ′i
]
{Var(ρi)}

−1
En[ρi] > χ2

r (1− α),

with χ2
r (1− α) the (1− α)-quantile of the chi squared distribution with r degrees of freedom, is

pointwise asymptotically level α. This test is easy to implement: on household panel data the

statistic is roughly 1.6 with a p-value of 0.9756 (7 degrees of freedom since T = 6).

In simulations, this test appears to be undersized. The source of the problem seems to lie in

the heavy tails that the sample moments have in practice: ρi involves third- and fourth-order

moments.

I have constructed two alternative test procedures for this application that perform better

in finite samples than the simple moment-based test. The first is a multivariate version of the

bounded-influence test of Heritier and Ronchetti (1994). The second is a test that is based on

an alternative limit distribution for En[ρi]. I model ρi as a mixture of two normal distributions

in which the mixing probability tends to zero at the rate n−1 and the location of the shift tends

to infinity at the rate
√

n. I derive an approximate likelihood for En[ρi] that I can apply to the

problem of testing E[ρi] = 0r×1. The asymptotic embedding guarantees that the skewness and
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the excess kurtosis of
√

nEn[ρi] across samples do not vanish. I calibrate the probability and

the location of the shift distribution with estimates of skewness and kurtosis of moments.

Both tests also fail to reject the null.
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D Tables and figures for panel of households (income)

D.1 Summary of covariates and some moments

TABLE 7. Covariates xi and their averages in the base period

Row Average

representative person is 30-34 years old 0.143
representative person is 35-39 years old 0.222
representative person is 40-44 years old 0.215
representative person is 45-49 years old 0.209
representative person is >50 years old 0.045
representative person is high-school graduate 0.314
representative person went to college 0.636
spouse is 30-34 years old 0.149
spouse is 35-39 years old 0.234
spouse is 40-44 years old 0.213
spouse is 45-49 years old 0.156
spouse is >50 years old 0.025
spouse is high-school graduate 0.34
spouse went to college 0.635
representative person is not white 0.064
number of children 1.335
family size 3.503
family lives in the southeast 0.229
family lives in the great lakes 0.193
family lives in the plains and mountains 0.178
family lives in the west 0.181
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TABLE 8. Var
(
yi,1:T

)

Row t1999 t2001 t2003 t2005 t2007 t2009

t1999 0.237 0.168 0.143 0.132 0.128 0.121
t2001 0.168 0.228 0.157 0.143 0.142 0.128
t2003 0.143 0.157 0.24 0.148 0.148 0.137
t2005 0.132 0.143 0.148 0.228 0.176 0.158
t2007 0.128 0.142 0.148 0.176 0.245 0.19
t2009 0.121 0.128 0.137 0.158 0.19 0.254

TABLE 9. Cov
(

yit, (∆yiτ)
2
)

/Var(∆εiτ) for τ > t + 1

Row t2003 t2005 t2007

t1999 0.023 -0.078 -0.101
t2001 -0.093 0.003
t2003 -0.086

TABLE 10. Cov
(
(∆yit)

2, (∆yiτ)
2
)

/Var(∆εit)Var(∆εiτ) for τ > t + 1

Row t2003 t2005 t2007

t2001 0.629 0.664
t2003 0.846
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D.2 Observable heterogeneity: functions of covariates

TABLE 11. Estimates of 100× βµ

Row LSestimate LSstderr IVestimate IVstderr

constant 10.46 0.13 10.46 0.12
Year 2001 0.04 0.01 0.04 0.01
Year 2003 0.01 0.02 0.01 0.01
Year 2005 0.03 0.02 0.04 0.02
Year 2007 0.06 0.02 0.07 0.02
Year 2009 0.03 0.02 0.04 0.02
representative person is 30-34 years old 0.16 0.04 0.16 0.03
representative person is 35-39 years old 0.22 0.05 0.23 0.03
representative person is 40-44 years old 0.23 0.06 0.27 0.04
representative person is 45-49 years old 0.23 0.07 0.28 0.05
representative person is >50 years old 0.21 0.08 0.29 0.05
representative person is high-school graduate 0.19 0.06 0.2 0.06
representative person went to college 0.43 0.06 0.44 0.06
spouse is 30-34 years old 0.05 0.03 0.03 0.02
spouse is 35-39 years old 0.09 0.05 0.06 0.03
spouse is 40-44 years old 0.16 0.06 0.09 0.03
spouse is 45-49 years old 0.23 0.07 0.11 0.04
spouse is >50 years old 0.22 0.08 0.1 0.04
spouse is high-school graduate 0.06 0.11 0.04 0.11
spouse went to college 0.29 0.11 0.25 0.11
representative person is not white -0.1 0.05 -0.1 0.05
number of children 0 0.02 -0.02 0.01
family size -0.02 0.02 -0 0.01
family lives in the southeast -0.17 0.04 -0.13 0.03
family lives in the great lakes -0.09 0.04 -0.04 0.04
family lives in the plains and mountains -0.24 0.04 -0.2 0.04
family lives in the west -0.06 0.04 -0.08 0.04
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TABLE 12. Estimates of 100× βη

Row LSestimate LSstderr IVestimate IVstderr

constant -116.24 16.92 -117.93 15.82
representative person age 0.94 0.5 1.22 0.44
representative person is high-school graduate -0.76 15.78 -3.69 16.19
representative person went to college 6.91 15.1 7.29 15.98

TABLE 13. Estimates of 100× βυ

Row LSestimate LSstderr IVestimate IVstderr

constant -259.35 197.56 -223.89 1392.7
representative personage 1.43 1.33 1.48 0.76
representative person is high-school graduate 22.86 197.82 5.51 1392.88
representative person went to college 18.67 199.35 1.03 1393.23

TABLE 14. Estimates of 100× βε

Row LSestimate LSstderr IVestimate IVstderr

constant -119.75 13.87 -96.93 15.33
representative person age -0.38 0.52 -1.17 0.43
representative person is high-school graduate -2.56 14.68 -26.33 15.31
representative person went to college 6.41 13.1 -19.58 13.86
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D.3 Unobserved heterogeneity: distributions of latent variables

FIGURE 9. PDF of σ2
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FIGURE 10. Joint PDF of ηi and σ2
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FIGURE 11. Conditional quantile function of σ2
i given ηi
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FIGURE 12. Conditional expectation function of σ2
i given ηi

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Quantiles of 
i

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

C
o
n
d
it
io

n
a
l 
e
x
p
e
c
ta

ti
o
n
 o

f 
i2

55



D.4 Observable and unobserved heterogeneity

FIGURE 13. PDF of σ̃2
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FIGURE 14. Joint PDF of η̃i and σ̃2
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D.5 Comparison with normality of shocks

FIGURE 15. PDFs of ηi, υit, εit, and σiεit
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TABLE 15. Skewness and kurtosis of ηi, υit, εit, and σiεit

Row Variance Skewness Kurtosis

ηi 0.167 -0.074 2.931
υit 0.021 -2.907 17.331
ε it 0.118 -1.278 6.817
ε̃ it 0.121 -1.905 17.026
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D.6 Consumption passthrough coefficients

TABLE 16. Regression of ∆c̃it on permanent and transitory shocks

HeterogeneityIn HeterogeneityOut

permanent shock 0.3513 0.3427
transitory shock -0.0016 0.1829
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D.7 Trends under the distribution of transitory risks

FIGURE 16. Evolution of the marginal distribution of σ2
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FIGURE 17. Evolution of the distribution of σ2
i given ηi

1975 1980 1985 1990 1995

Year

0.4

0.6

0.8

1

1.2

1.4

1.6

M
e

a
n

 o
f 

i2
 (

fo
r 

d
if
fe

re
n

t 
q

u
a

n
ti
le

s
 o

f 
i) 0.08-quantile

0.17-quantile

0.25-quantile

0.50-quantile

0.67-quantile

0.75-quantile

0.83-quantile

59



FIGURE 18. Evolution of the marginal distribution of σ̃2
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E Tables and figures for panel of workers (wages)

E.1 Summary of covariates and some moments

TABLE 17. Covariates xi and their averages in the base period

Row Average

worker is 30-34 years old 0.161
worker is 35-39 years old 0.222
worker is 40-44 years old 0.199
worker is 45-49 years old 0.187
worker is >50 years old 0.041
worker is high-school graduate 0.34
worker went to college 0.61
worker is not male 0.109
worker is not white 0.097
number of children 1.152
family size 3.096
family lives in the southeast 0.235
family lives in the great lakes 0.189
family lives in the plains and mountains 0.159
family lives in the west 0.196
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TABLE 18. Var
(
yi,1:T

)

Row t1999 t2001 t2003 t2005 t2007 t2009

t1999 0.246 0.17 0.154 0.145 0.145 0.148
t2001 0.17 0.244 0.17 0.163 0.161 0.159
t2003 0.154 0.17 0.291 0.178 0.176 0.176
t2005 0.145 0.163 0.178 0.266 0.196 0.196
t2007 0.145 0.161 0.176 0.196 0.271 0.224
t2009 0.148 0.159 0.176 0.196 0.224 0.314

TABLE 19. Cov
(

yit, (∆yiτ)
2
)

/Var(∆εiτ) for τ > t + 1

Row t2003 t2005 t2007

t1999 0.102 -0.027 -0.084
t2001 -0.072 -0.088
t2003 -0.104

TABLE 20. Cov
(
(∆yit)

2, (∆yiτ)
2
)

/Var(∆εit)Var(∆εiτ) for τ > t + 1

Row t2003 t2005 t2007

t2001 0.816 0.241
t2003 -0.08
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E.2 Observable heterogeneity: functions of covariates

TABLE 21. Estimates of 100× βµ

Row LSestimate LSstderr IVestimate IVstderr

constant 2.38 0.07 2.48 0.06
Year 2001 0.07 0.01 0.07 0.01
Year 2003 0.04 0.02 0.05 0.02
Year 2005 0.05 0.02 0.06 0.02
Year 2007 0.09 0.02 0.1 0.02
Year 2009 0.11 0.02 0.13 0.02
worker is 30-34 years old 0.15 0.03 0.16 0.02
worker is 35-39 years old 0.24 0.03 0.23 0.03
worker is 40-44 years old 0.32 0.04 0.27 0.03
worker is 45-49 years old 0.33 0.04 0.27 0.03
worker is >50 years old 0.34 0.05 0.27 0.04
worker is high-school graduate 0.17 0.05 0.17 0.05
worker went to college 0.54 0.04 0.53 0.05
worker is not male -0.22 0.05 -0.23 0.05
worker is not white -0.22 0.04 -0.23 0.04
number of children 0.01 0.02 0.01 0.01
family size 0.03 0.02 0 0.01
family lives in the southeast -0.2 0.04 -0.16 0.03
family lives in the great lakes -0.15 0.04 -0.13 0.04
family lives in the plains and mountains -0.21 0.04 -0.18 0.04
family lives in the west -0.07 0.05 -0.08 0.04
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TABLE 22. Estimates of 100× βη

Row LSestimate LSstderr IVestimate IVstderr

constant -138.19 13.59 -137.94 13.13
worker age 0.38 0.37 0.53 0.49
worker is high-school graduate 30.94 13.13 28.86 11.71
worker went to college 45.28 12.31 45.58 11.22

TABLE 23. Estimates of 100× βυ

Row LSestimate LSstderr IVestimate IVstderr

constant -273.43 162.06 -254.6 7285.07
worker age 2.34 3.12 1.84 1.28
worker is high-school graduate -4.08 141.3 19.54 7286.43
worker went to college 37.98 138.19 32.64 7286.43

TABLE 24. Estimates of 100× βε

Row LSestimate LSstderr IVestimate IVstderr

constant -120.45 15.09 -114.87 14.12
worker age -0.73 0.4 -1.1 0.42
worker is high-school graduate 9.25 13.2 5.25 11.8
worker went to college 5.96 13.58 3.15 11.96
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E.3 Unobserved heterogeneity: distributions of latent variables

FIGURE 19. PDF of σ2
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FIGURE 20. Joint PDF of ηi and σ2
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FIGURE 21. Conditional quantile function of σ2
i given ηi
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FIGURE 22. Conditional expectation function of σ2
i given ηi
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E.4 Observable and unobserved heterogeneity

FIGURE 23. PDF of σ̃2
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FIGURE 24. Joint PDF of η̃i and σ̃2
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E.5 Comparison with normality of shocks

FIGURE 25. PDFs of ηi, υit, εit, and σiεit
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TABLE 25. Skewness and kurtosis of ηi, υit, εit, and σiεit

Row Variance Skewness Kurtosis

ηi 0.183 0.06 2.818
υit 0.028 -2.529 22.85
ε it 0.118 -1.186 11.407
ε̃ it 0.124 -1.479 18.883
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E.6 Regression on labor market variables

TABLE 26. Regression of ln(σi) on labor market variables

Estimates

constant -1.56
unemployment 41.33
self employment 22.44
contract under union -3.58
paid by the hour -4.34
occupation: managers 3.67
occupation: sales workers 11.11
occupation: clerical workers 0.07
occupation: factory workers 7.23
occupation: farmers 9.17
occupation: service workers 13.58
industry: manufacture -18.79
industry: retail -16.42
industry: finance -15.03
industry: services -15.02
industry: public sector -25.51
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