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A Definition of CPS partitions

We partition workers in the CPS using the same definitions as the Atlanta Fed WGT
[Atlanta Fed, 2023].

Industries (7 groups) Construction and Mining, Education and Health, Finance and
Business Services, Leisure and Hospitality, Manufacturing, Public Administration, and
Trade and Transportation.

Occupations (3 groups) high–skill (Managers, Professionals, Technicians), middle–
skill (Office and Administration, Operators, Production, Sales), and low–skill (Food
Preparation and Serving, Cleaning, individual Care Services, Protective Services).

Race (2 groups) White and Nonwhite.

Education (3 groups) High school or less, Associates degree, and Bachelor degree or
higher.

Age (3 groups) 16–24 years old, 25–54, and 55+.

Gender (2 groups) Male and Female.

Wage quartiles (4 groups) The quartiles are based on the average between work-
ers’ current hourly wage and their wage 12 months prior (when their wages are last
recorded).

†Federal Reserve Bank of New York. Email: martin.almuzara@ny.frb.org. The views expressed in
this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank
of New York or the Federal Reserve System.

‡Federal Reserve Bank of New York. Email: richard.audoly@ny.frb.org.
§Federal Reserve Bank of New York. Email: davide.melcangi@ny.frb.org.
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Region (9 groups) The nine Census Divisions: New England (Connecticut, Maine,
Massachusetts, New Hampshire, Rhode Island, Vermont), Mid-Atlantic (New Jersey,
New York, Pennsylvania), East North Central (Illinois, Indiana, Michigan, Ohio, Wis-
consin), West North Central (Iowa, Kansas, Minnesota, Missouri, Nebraska, North
Dakota, South Dakota), South Atlantic (Delaware, Florida, Georgia, Maryland, North
Carolina, South Carolina, Virginia, District of Columbia, West Virginia), East South
Central (Alabama, Kentucky, Mississippi, Tennessee), West South Central (Arkansas,
Louisiana, Oklahoma, Texas), Mountain (Arizona, Colorado, Idaho, Montana, Nevada,
New Mexico, Utah, Wyoming), Pacific (Alaska, California, Hawaii, Oregon, Washing-
ton).

B Details of model and estimation approach

Recall our notation for the data wt = {wit}
n
i=1, the time-invariant parameters

θ =
(
{θcℓ}1≤ℓ≤p, {θiℓ}1≤ℓ≤q,1≤i≤n

)
,

γ =
(
{γα,m,i}m=τ,ε,1≤i≤n, {γσ,m, j}m=∆τ,ε, j=c,1,...,n

)
,

the time-varying parameters

λt =
(
{ατ,it, αε,it}

n
i=1, σ∆τ,ct, {σ∆τ,it}

n
i=1, σε,ct, {σε,it}

n
i=1

)
,

and the latent components

ξt =
(
τct, {τit}

n
i=1, εct, {εit}

n
i=1

)
.

To conduct Bayesian inference, we begin by formulating a prior on (θ, γ).

Choice of priors The MA coefficients θ are prior independent of each other with
θ jℓ ∼ N(0, v2

ℓ) for j = c, 1, . . . ,n. That is, we shrink the model towards one with white
noise transitory errors and the strength of the shrinkage is determined by the choice of
vℓ. In our baseline model we set p = 0 and q = 3, and we put higher penalties on the
more distant lags as in the Minnesota prior of Doan, Litterman, and Sims [1983]. We
achieve that by setting vℓ = 1/(10ℓ2).

The standard deviations γ control the amount of time-variation in loadings and
volatilities. Unless they are small, the model may be excessively flexible causing

2



overfitting. Our approach is to put a reasonably tight prior centered around small
values to shrink the model towards no time-variation in the parameters. Specifically
we use independent inverse gamma priors of the form γ2

k,m, j ∼ Γ
−1(dk/2, 2/(dks

2
k)) for

k = α, σ. The location parameters are set to s2
α = 0.0001 and s2

σ = 0.001, and the
degree-of-freedom hyperparameters are set to dα = dσ = 60.

Estimation and filtering Inference about parameters and latent variables is imple-
mented via Gibbs sampling. This is a type of Markov Chain Monte Carlo (MCMC)
algorithm suitable to approximate the joint posterior distribution of parameters and
latent variables by simulation in state-space models.

The Gibbs sampler constructs a Markov Chain
{
θ(s), γ(s), {λ(s)

t }, {ξ
(s)
t }

}S

s=1
having as

invariant distribution the posterior

P
(
θ, γ, {λt}, {ξt}

∣∣∣{wt}
)
.

This allows us to estimate the posterior of our objects of interest, e.g.

P
(
{τ̃t, {τ̃it}

n
i=1}

∣∣∣{wt}
)
,

using the draws
{
θ(s), γ(s), {λ(s)

t }, {ξ
(s)
t }

}S

s=1
to form

{
{τ̃(s)

t , {τ̃
(s)
it }

n
i=1}

}S

s=1
and taking the simu-

lation frequencies of the objects as estimates of posterior probabilities. If the Markov
chain converges (in a suitable sense) and S is large, the approximation error will be
small.

One advantage of the Bayesian approach is that posterior calculations already
integrate both the sampling uncertainty from parameter estimation and the signal-
extraction uncertainty about the latent components. When reporting the path over
time of a latent time series in our empirical analysis, we use credible intervals with
fixed credibility level pointwise in t.1

An alternative would be to estimate (θ, γ) by maximum likelihood. It is straight-
forward to modify our MCMC algorithm to approximate the maximum likelihood
estimator by stochastic EM — simply replace the posterior updates of θ and γ by the
solutions to the corresponding complete-data score equations. However, inferences
about latent variables (and, in particular, about our objects of interest) that arise from
that procedure would not necessarily account for the estimation uncertainty in (θ, γ).

1It is conceptually straightforward and computationally feasible to compute pathwise credible re-
gions along the lines of, e.g., Inoue and Kilian [2016].

3



Gibbs sampling Our algorithm follows Stock and Watson [2016] who build on the
method proposed by Del Negro and Otrok [2008] to estimate dynamic factor models
with time-varying loadings and volatilities.

Relative to Del Negro and Otrok [2008], Stock and Watson [2016] incorporate out-
liers in the transitory shocks. Compared to Stock and Watson [2016], we allow for
temporal aggregation in the persistent components and for MA dynamics in the tran-
sitory components. For simplicity, we discuss estimation of a model without outliers.2

We find only a negligible role for them in the data we analyze.
The Gibbs sampler exploits the fact that with a careful grouping of parameters

and latent variables, the conditional distributions of each block given the rest can be
simulated by well-known algorithms. In our model, there are three big blocks with
many sub-blocks, namely:

(A) P({ξt}|{λt}, θ, γ, {wt}). Conditional on time-varying parameters {λt} and the MA co-
efficients θ, the data wt and the latent variables ξt are related by a linear state-space
model with time-varying matrices. We apply the simulation smoother algorithm
proposed by Durbin and Koopman [2002] to efficiently sample {ξt}.

To accommodate the MA dynamics of the common and sector-specific transitory
errors, we include εct, εc,t−1, . . . , εc,t−p+1, {εit, εi,t−1, . . . , εi,t−q+1}

n
i=1 as additional state

variables.

(B) P({λt}|{ξt}, θ, γ, {wt}). This can be further partitioned into the following blocks:

(i) P
({
{ατ,it, αε,it}

n
i=1

}∣∣∣∣{{wit, τit}
n
i=1

}
, {τct, εct},

{
{σε,it}

n
i=1

}
, {γα,τ,i, γα,ε,i}

n
i=1

)
. It is the

result of a multivariate regression with time-varying coefficients and MA
error terms. It can be dealt with using linear state-space techniques. Thus, we
apply the simulation smoothing algorithm of Durbin and Koopman [2002] to
the corresponding state-space representation in order to sample {{ατ,it, αε,it}

N
i=1}.

(ii) P
(
{σm, jt}

∣∣∣{m jt}, γσ,m, j
)

for m = ∆τ, ε and j = c, 1, . . . ,n. Given γσ,m, j and m jt,
σm, jt follows a stochastic-volatility model with observation equation ln m2

jt =

ln σ2
m, jt + ln η2

m, jt and transition equation ∆ ln σ2
m, jt = γσ,m, jνσ,m, jt. We then use

the algorithm proposed in Kim, Shephard, and Chib [1998] and Omori, Chib,
Shephard, and Nakajima [2007] that consists of approximating the log-χ2

1

distribution of ln η2
σ,m, jt with a 10-component normal mixture and applying

linear state-space techniques to that approximation.
2The outliers in Stock and Watson [2016] are introduced by assuming ηε, jt = s jt× η̃ε, jt for j = c, 1, . . . ,n

where s jt = 1 with probability p j and s jt ∼ U(1, 10) with probability 1 − p j while η̃ε, jt ∼ N(0, 1).
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(C) P(θ, γ|{ξt}, {λt}, {wt}). This can also be partitioned into subblocks:

(i) P
(
γα,m,i

∣∣∣{∆αm,it}
)

for m = τ, ε. We draw the reciprocal of the square root
of a gamma random variable with dα + T degrees of freedom and mean
(dαs

2
α +

∑T
t=1 ∆αm,it)/(dα + T) for m = τ, ε.

(ii) P
(
γσ,m, j

∣∣∣∣{∆ ln σ2
m, jt
}

)
for m = ∆τ, ε and j = c, 1, . . . ,n. We draw the reciprocal

of the square root of a gamma random variable with dσ+T degrees of freedom
and mean (dσs

2
σ +

∑T
t=1 ∆ ln σ2

m, jt)/(dσ + T) for m = τ, ε and j = c, 1, . . . ,n.

(iii) P
(
θ j

∣∣∣{ε jt}, {σε, jt}
)

for j = c, 1, . . . ,n whereθc = (θc1, . . . , θcp)′ andθi = (θi1, . . . , θiq)
′

for i = 1, . . . ,n. This problem can be treated separately for each j. We do the
derivation for j = i = 1, . . . ,n (the case j = c is identical except that p should
take the place of q). Define υit = σε,itηε,it. Conditioning on q initial observations
εi0, . . . , εiq−1 we obtain the likelihood term

P
(
{εit}

T
t=1

∣∣∣{θiℓ}
q
ℓ=1, {εi1−ℓ}

q
ℓ=1, {σε,it}

)
=

T∏
t=1

P
(
εit

∣∣∣{θiℓ}
q
ℓ=1, {εit−ℓ}

t−1+q
ℓ=1 , {σε,it}

)
=

T∏
t=1

P
(
εit

∣∣∣{θiℓ}
q
ℓ=1, {υit−ℓ}

q
ℓ=1, σε,it

)
=

T∏
t=1

1
σε,it
ϕ

εit −
(∑q
ℓ=1 θiℓυit−ℓ

)
σε,it


where ϕ is the standard normal density. This is the likelihood from a re-
gression of εit on (υit−1, . . . , υit−q)

′ with heteroskedastic Gaussian errors or,
equivalently, (up to a scaling constant) from a regression of yit = εit/σε,it
on xit = (υit−1, . . . , υit−q)

′/σε,it with i.i.d. N(0, 1) errors. Since the prior is
(θi1, . . . , θiq)

′
∼ N(0Q×1,Vθ) where the variance is Vθ = diag

(
v1, . . . , vq

)
, the

posterior follows from the usual regression formula

{θiℓ}
q
ℓ=1

∣∣∣∣∣{εit}, {σε,it} ∼ N


V−1
θ +

T∑
t=1

xitx
′

it


−1 T∑

t=1

xityit,

V−1
θ +

T∑
t=1

xitx
′

it


−1 .

Conditioning on the initial observations {εi1, . . . , εi1−q} has at most a small
effect when T is large. As an alternative, we can include {υit} as state variables
in step (A).
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Implementation, numerical accuracy and tests We do S = 12, 000 draws retaining
one every two after burning the first 6, 000. The result is a chain for the parameters
(θ, γ) with low enough autocorrelations that the posterior expectations have negligible
Monte Carlo standard errors. We also monitor the behavior of the latent variables
and stochastic volatilities, the paths of which seem to stabilize within a small region
well before the burn-in period ends. We ran the posterior simulator test suggested by
Geweke [2004] and an extensive Monte Carlo simulation study, finding no indication
against our implementation.

C Monte Carlo simulations

To assess how reliable our estimates of Core Wage Inflation are we conduct Monte Carlo
simulations. We are interested in two questions. First, we ask whether our approach can
accurately trace out the persistence pattern in monthly wage inflation from observations
on 12-month wage growth rates, that is, whether we can successfully disentangle the
temporal aggregation in the data. Second, we ask whether our approach has any bias —
any tendency to over or understate the role of common and idiosyncratic components.
To give a preview, the findings in this appendix validate the performance of the model
in disentangling temporal aggregation and show that our method is not biased towards
attributing an excessive role to the common component.

We simulate nMC = 200 samples of size N = 7 and T = 300 (N,T are chosen to be
similar to our sample of wage growth by industry) from the following data generating
process (DGP):

wit =
1
12

12∑
ℓ=1

τ̃i,t+1−ℓ + ε̃it, i = 1, . . . ,N, t = 1, . . . ,T,

τ̃it = ατ,iτct + τit,

ε̃it = αε,iεct + εit + θiεi,t−1,

∆τct
iid
∼ N(0, 1), ∆τit

iid
∼ N(0, σ2

∆τ,i),

εct
iid
∼ N(0, 1), εit

iid
∼ N(0, σ2

ε,i).

We abstract from time-variation in loadings and volatilities in the DGP and we treat
sectors symmetrically, setting ατ,i = ατ, αε,i = αε, σ∆τ,i = σ∆τ, σε,i = σε. Nonetheless,
we conduct estimation in each sample allowing for both time-varying parameters and
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heterogeneity and we use exactly the same priors we adopted in the empirical analysis
of the paper.

We calibrate αε = 0.02, σ∆τ = 0.2 and σε = 0.85 (we also set θi = θ = 0.1) using the
averages across sectors and over time of the estimates we obtained in our sample of
wage growth by industry. For ατ we try two different values, namely: ατ ∈ {0, 0.3}.
Since the variance of ∆τc is unity, the parameter ατ controls the importance of the
common component in driving the trajectory of the total trend of each sector. The
value ατ = 0.3 is the average across industries and periods we found in our sample.
The value ατ = 0 represents a case where the common component is zero. We consider
this extreme case to assess whether our method would spuriously recover a common
component that does not exist.

In each sample, we run our estimation algorithm and we recover the posterior p-
quantile of the total trend τ̃t = N−1 ∑N

i=1 τ̃it, its common part τ̃Ct = N−1 ∑N
i=1 ατ,iτct and its

idiosyncratic part τ̃It = N−1 ∑N
i=1 τit, that we denote τ̃t(p), τ̃Ct(p) and τ̃It(p). Note that we

are assuming all sectors have the same employment share and that these are constant
over time, i.e., we set sit = N−1.

We use our Monte Carlo simulation to estimate the bias of the posterior median
(seen as a point estimate of the latent variables) and the frequentist coverage rates of
credible intervals based on the posterior. For τ̃t, for example, we have

biast = E
[
τ̃t

(1
2

)
− τ̃t

]
,

covt = P

[
τ̃t

(
β

2

)
≤ τ̃t ≤ τ̃t

(
1 −
β

2

)]
where expectations and probabilities are taken with respect to repeated sampling from
the DGP (and they are estimated by averaging over the nMC Monte Carlo samples). A
good estimator of the trend will deliver biast ≈ 0 and covt ≈ 1 − β. We can similarly
define bias and coverage rates for τ̃Ct and τ̃It.

One detail is that the location of τ̃Ct and τ̃It has to be decided by a normalization. In
the empirical analysis of the paper, for example, we use τ̃C1 = 0. To avoid ambiguities,
below we report bias and coverage rates for τ̃Ct − T−1 ∑T

s=1 τ̃Cs and τ̃It − T−1 ∑T
s=1 τ̃Is.

Results look similar using alternative normalizations.
We display the bias calculations in Figure C1. For τ̃t, for example, we plot the

sampling distribution of
{
τ̃t

(
1
2

)
− τ̃t

}T

t=1
indicating for each t the values contained be-

tween the 0.16- and 0.84-quantiles of the sampling distributions with a shaded area. We
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also report med
(
τ̃t

(
1
2

)
− τ̃t

)
(blue dashed line) and biast = E

[
τ̃t

(
1
2

)
− τ̃t

]
(black dotted

line). We do the same for τ̃Ct and τ̃It. The figure shows that our approach has no
systematic tendency to over or underestimate the trend, its common or its idiosyncratic
component. This holds for both ατ = 0.3 (a value representative of our sample) and,
reassuringly, for ατ = 0. In other words, even in the extreme case where the com-
mon component does not exist, there is no evidence to suggest that our model would
spuriously find a role for a common component.

Turning to the coverage properties of posterior intervals, the performance of our
method is solid. We report the average over t of estimated coverage rates T−1 ∑T

t=1 covt

for our two designs in Table C1.

TABLE C1. Average coverage rates for nominal rate 1 − β = 0.68

ατ = 0 ατ = 0.3

τ̃t 0.763 0.719
τ̃Ct 0.998 0.665
τ̃It 0.896 0.657

We set the probability level to 1−β = 0.68, the level we use in our empirical analysis
and equivalent to intervals of roughly one standard deviation radius under a normal
distribution. When ατ = 0.3, the average coverage rates are reasonably close to the
nominal rate suggesting that our framework produces reliable inferences about the
trend and its common and idiosyncratic components in repeated samples.3

When ατ = 0, our method produces relatively conservative inferences in the sense
that it overcovers both the common and idiosyncratic component. In particular, the
probability bands for τ̃Ct contain the zero line (its true value) in practically all samples.
This agrees with our claim that our method does not have a systematic tendency to
find a common component when there is none.

These results are important because the good coverage of our method is a frequentist
property, even though the intervals we use are Bayesian credible intervals. Moreover,
our estimation and inference approach uses a prior that does not center the model at
the DGP, suggesting that shrinking our model away from the DGP has a negligible
effect as with these parameters and sample size the prior is dominated by the sample
information.

3Our method also achieves good coverage pointwise in t.
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FIGURE C1. Bias of the posterior median estimate

(a) Bias for τ̃t for ατ = 0 (b) Bias for τ̃t for ατ = 0.3

(c) Bias for τ̃Ct − T−1 ∑T
s=1 τ̃Cs for ατ = 0 (d) Bias for τ̃Ct − T−1 ∑T

s=1 τ̃Cs for ατ = 0.3

(e) Bias for τ̃It − T−1 ∑T
s=1 τ̃Is for ατ = 0 (f) Bias for τ̃It − T−1 ∑T

s=1 τ̃Is for ατ = 0.3
9



D Additional empirical results

D.1 Wage growth behavior across industries

FIGURE D1. Aggregate and group-specific trend by industry
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(b) Education and Health
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(c) Finance and Business Services
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NOTES. The figure shows for each industry the raw nominal wage growth data, the common trend
component (ατ,itτct) and the sector specific trend (τit) over the sample period.
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D.2 Core Wage Inflation using alternative CPS partitions

FIGURE D2. Core Wage Inflation across models
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NOTES. The three episodes refer to the following periods: 2001m3-2001m11, 2007m12-2009m6, and
2020m6-2022m2. Each model uses the data cut described in the legend; the variables follow the Atlanta
Fed Wage Growth tracker definition and are detailed in Appendix A. Black square markers indicate
the peak-to-trough change in Core Wage Inflation for each model and episode. The diamond markers
indicate the peak-to-trough change for the common component

(∑n
i=1 sitατ,it

)
τct in each model and

episode. Vertical lines show the 68 percent probability bands.
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D.3 Core Wage Inflation, labor market conditions, and price inflation

In Table D1, we benchmark our Core Wage Inflation measure, and its common compo-
nent, to three commonly used measures of aggregate nominal wage growth: average
hourly earnings (AHE), the Atlanta Fed Wage Growth Tracker (AWGT), and the Em-
ployment Cost Index. We report contemporaneous correlation between changes in
each of these measures and changes in labor market conditions (vacancy to labor force
ratio and unemployment rate) and price inflation (core PCE inflation and core services
ex-housing inflation). Changes are monthly in the upper part of the table and quarterly
in the lower part, given the quarterly frequency of ECI.

TABLE D1. Correlations with labor market and price inflation time series

Vacancy to
labor force ratio

Unemployment
rate

Core PCE
inflation

Core services ex housing
PCE inflation

Monthly wage inflation measures
Core Wage Inflation 0.331∗∗∗ −0.094∗ 0.300∗∗∗ 0.242∗∗∗

Core Wage Inflation (common) 0.320∗∗∗ −0.077 0.310∗∗∗ 0.245∗∗∗

AHE −0.174∗∗∗ 0.588∗∗∗ −0.227∗∗∗ −0.226∗∗∗

Atlanta Fed wage tracker −0.003 −0.115∗∗ 0.088 0.028

Quarterly wage inflation measures
Core Wage Inflation 0.718∗∗∗ −0.295∗∗∗ 0.427∗∗∗ 0.334∗∗∗

Core Wage Inflation (common) 0.717∗∗∗ −0.285∗∗∗ 0.436∗∗∗ 0.334∗∗∗

ECI 0.159 −0.158 0.221∗∗ 0.209∗∗

NOTES. Core Wage Inflation, Atlanta Fed wage tracker, AHE, the unemployment rate and price inflation
measures are monthly series over the period 1997m1–2023m9. The vacancy ratio is over the period
2000m12–2023m9. Results are qualitatively similar prior to 2020m3. Vacancies are seasonally adjusted
job openings from the Job Openings and Labor Turnover Survey (JOLTS) of the Bureau of Labor Statistics.
AHE is the 12-month percent change in average hourly earnings of production and non-supervisory
employees on private nonfarm payrolls, from the Current Employment Statistics of the Bureau of Labor
Statistics. The Atlanta Fed wage tracker (Atlanta Fed [2023]) is the unweighted 3-month moving average
of median 12-month wage growth. Core PCE inflation comes from the Bureau of Economic Analysis and
excludes energy and food. ECI is a quarterly measure of the 12-month percent change in the Employment
Cost Index measured by the Bureau of Labor Statistics. The time period is 1997Q1–2023Q2. When
computing correlations at quarterly frequency, the price inflation measures and Core Wage Inflation are
12-month changes using the third month of the quarter as ECI. All correlations are for variables in first
differences.

Changes in Core Wage Inflation (and its common component) are strongly and
significantly correlated with changes in the vacancy to labor force ratio: intuitively,
a tighter labor market should put upward pressure on wages. The correlation is in-
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significant for ECI, absent for the AWGT, and even of the opposite sign for AHE. A
similar pattern is observed for the unemployment rate, although differences are less
stark – with the exception of AHE. Changes in Core Wage Inflation and its common
component are positively and significantly correlated with changes in inflation, consis-
tent with the idea that wage pressures may be associated with price pressures. The ECI
has a similar pattern but a weaker association; the Atlanta Fed measure is uncorrelated
with inflation whereas AHE has, again, the wrong sign.

E Robustness checks

In this appendix, we verify the robustness of the main results of the paper to three
choices we make in the empirical analysis. The first is to use the median instead of
the mean of year-over-year wage growth as the observable wit in our model. The
second choice is to use the unweighted median as opposed to the median weighted
by the survey weights as wit. Third, we do not allow for τ̃it to be itself the sum of
a persistent and a transitory component. Figures E1, E2 and E3 show that both the
historical behavior of the persistent component in wage growth and the relatively high
importance of common variation across industries are insensitive to these choices.

FIGURE E1. Estimates based on mean year-over-year wage growth

(a) Persistent component of wage growth (b) Common and sector-specific contribution

Despite mean year-over-year wage growth being more volatile than median wage
growth, our model traces a remarkably similar historical evolution of the persistent
component (Core Wage Inflation), with the largest swings located around the same
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episodes we discussed in Section 4 (i.e., the 2001 and 2008 recessions, and the post-
pandemic inflation spike). Core Wage Inflation is somewhat higher when using the
mean instead of the median due to the positive skewness in the wage growth distri-
bution, but this seems to imply merely a level shift in the persistent component. The
cumulative changes in panel (b) of figure E1, for example, are quantitatively very close
to our baseline results.

Differences in our estimates when using the weighted instead of the unweighted
median of wage growth as wit are imperceptible, as shown in figure E2.

FIGURE E2. Estimates based on weighted median wage growth

(a) Persistent component of wage growth (b) Common and sector-specific contribution

Figure E3 illustrates a point made in section 3. Our empirical analysis interprets the
transitory component of year-over-year wage growth ε̃it as being largely measurement
error. Therefore, τ̃it is interpreted as the unobservable monthly growth rate of nominal
wages that could be recovered with a perfect error-free survey. Because we rely on time
series smoothing techniques, the assumption that τ̃it is well approximated by a random
walk is important in order to filter the survey measurement error out. If instead τ̃it is
the sum of two components,

τ̃it = τ̃
pers
it + τ̃tr

it

where τ̃pers
it is now a random walk and τ̃tr

it is white noise, our baseline model with
the choice of moving average orders p = q = 12 would estimate τ̃pers

it instead of τ̃it.
Comparing estimates from this extended model and the results in section 4 provides a
sense of how important the genuine transitory shock τ̃tr

it is. Figure E3 indicates that τ̃tr
it
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plays at most a minor role and that the more parsimonious model used in our paper
captures sufficiently well the most salient movements in aggregate wage growth, which
tend to be very persistent.

FIGURE E3. Estimates based on a more flexible specification

(a) Persistent component of wage growth (b) Common and sector-specific contribution

A final piece of evidence supporting our interpretation of ε̃it as measurement error
is shown in figure E4. Consider the transitory component of aggregate wage growth,
which we define as

ε̃t =

n∑
i=1

sitε̃it =

n∑
i=1

sitwit − τ̃t

where sit is the employment share of cross-section i in month t. The variance of ε̃t is
given by

σ̃2
ε,t =

 n∑
i=1

sitαε,it

2

σ2
ε,ct +

n∑
i=1

s2
itσ

2
ε,it.

If ε̃it is the error made in using the sample median of year-over-year wage growth wit

from a sample of nit workers to estimate the population growth rate
∑12
ℓ=1 τ̃it+1−ℓ/12 in

each sector i, then the standard deviation σ̃ε,t should be proportional to 1/
√

nt where
nt =

∑n
i=1 nit is the survey sample size in month t. Figure E4 shows precisely that: a

scatter plot of (the posterior median estimate of) σ̃ε,t against nt in which most of the
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points lie close to the line σ̃ε,t = ĉ/
√

nt.
4 We find a similar pattern if we consider

the correlation between sample size nit and the standard deviation σε,it for a specific
industry i.

FIGURE E4. Standard deviation of transitory shocks and survey sample sizes

3000 2500 2000 1500 1000
0.25

0.3

0.35

0.4

We also find, consistent with our interpretation, that for every i the path of αε,itσ
2
ε,ct

always contains the zero line, indicating a negligible role for cross-sectional correlation
across ε̃it.

F Additional evidence using CES

This appendix presents estimates of the persistent component of month-on-month
growth rates in nominal wages using data from the Current Employment Statistics
(CES).5 Because the data already provides month-on-month changes, denoted by Wit

below, we estimate our model without temporal aggregation. In other words, instead
of (2), our measurement equation is

Wit = τ̃it + ε̃it

4In fact, the correlation between σ̃ε,t and 1/
√

nt is 0.9.
5We use average hourly earnings of production and non-supervisory employees on private nonfarm

payrolls.
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with the persistent component τ̃it and the transitory component ε̃it modeled as in
Section 3. The cross-sectional dimension is industries since the CES is a survey of
establishments.6

As noted in Section 2, the CES measure of wages is subject to compositional issues.
However, the CES spans a longer period (in this case beginning in 1964), which allows
us to empirically study additional recessions and the inflationary episodes of the late
1960s and 1970s. Figure F1 contains the trend estimates and its decomposition into
common and sector-specific drivers. Figure F1a is the CES equivalent to Figure 2a and
Figure F1b is comparable to Figure 2b.

Figure F1a shows that the model attributes most of the high-frequency variation in
nominal wage growth in the CES to the transitory variation term ε̃it. The two largest
changes in the persistent component of wage inflation correspond to the inflation
episodes in the 1970s and the post-pandemic inflation surge. From the 1980s, most
NBER recessions tend to be associated with a drop in Core Wage Inflation.

In addition, Figure F1b confirms our findings that the sector-specific persistent
component captures very low frequency movements. In contrast, the common latent
factor plays a prominent role during large swings in aggregate nominal wage growth,
and especially in the inflationary periods. This is visually clear in the 1970s, thus
suggesting that our results are not specific to the post-pandemic period. For example,
about 80% of the 4.5 percentage point increase in wage inflation between 1965 and 1981
is common across industries. Looking at shorter periods, the common factor explains
78% and 85% of the increase in wage inflation between 1973 and 1975 and between
1980 and 1982, respectively.

6We consider 10 industries: Construction, Financial Activities, Information, Leisure and Hospitality,
Manufacturing, Mining and Logging, Other Services, Private Education and Health Services, Profes-
sional and Business Services, Trade-Transportation-Utilities.
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FIGURE F1. Estimates using CES data

(a) Persistent component of wage growth

(b) Common and sector-specific contribution
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