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Abstract

We recover the persistent (“core”) component of nominal wage growth over the

past 25 years in the United States. Our approach combines worker-level data with

time-series smoothing methods and can disentangle the common persistence of

wage inflation from the persistence specific to some subgroup of workers, such as

workers in a specific industry. We find that most of the business cycle fluctuations

in wage inflation are persistent and driven by a common factor. This common

persistent factor is particularly important during inflationary periods, and it ex-

plains 80 to 90 percent of the post-pandemic surge in wage inflation. Contrary to

standard measures of wage inflation, the persistent component of wage inflation

contemporaneously co-moves with labor market tightness.
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1 Introduction

The post-pandemic surge in inflation has renewed interest in the aggregate evolution of
nominal wages. Because wage inflation is perceived as tightly linked to price inflation,
it is one of the key indicators monitored for the conduct of monetary policy. It also
provides a signal about the state of the labor market, and it is an important input
for households’ and firms’ decisions. While there is extensive work on constructing
measures of price inflation that are purged from noise and short-run fluctuations,
surprisingly little research has been devoted to the underlying dynamics of aggregate
nominal wage growth.1

This paper describes a framework to isolate the persistent (“core”) latent component
of wage inflation.2 Our approach combines worker-level data with time series filtering
and smoothing methods. We estimate a dynamic factor model with time-varying
parameters in which wage inflation is the sum of a persistent component common
to all workers, a persistent component specific to some subgroup of workers, such
as industries or occupations, and transitory shocks. We find that most of the business
cycle fluctuations in wage inflation are persistent and that the evolution of the persistent
component is driven by its common component. This common latent factor is especially
predominant during the wage inflation surge of 2021.

Our analysis employs monthly worker-level information on hourly wages from the
Current Population Survey (CPS). Our statistical model lends itself naturally to this data
set since it allows us to break down aggregate changes in nominal wages across many
alternative cross-sections of the data. In line with the price inflation literature, our main
focus is on the industry cross-section, but we also consider a range of alternatives based
on demographic and geographic variables. A difficulty of this data set is that, although
observed each month, nominal wage growth in our worker-level data is measured as a
12-month rate of change rather than as month-on-month change.

The first contribution of our paper is to design a model that explicitly accounts for the
monthly-to-yearly temporal aggregation. We build on the framework that Stock and

1See Stock and Watson [2016] for a summary of the price inflation literature. On the evolution of
aggregate wages, Daly, Hobijn, and Wiles [2011] examine the time-varying cyclicality of real wages.
Huh and Trehan [1995] estimate a vector error correction model with prices, wages and productivity. A
broader literature studies the link between nominal wage growth and price inflation, which is beyond
the scope of our paper. For recent work on this, see Kiley [2023].

2Similarly to measures of core price inflation, our goal is to capture the persistent part of inflation by
abstracting from its more volatile components. As we describe in the paper, our measure is conceptually
distinct from core price inflation, which simply excludes food and energy.
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Watson [2016] previously applied to price data to retrieve the persistent component of
unobserved monthly wage growth.3 This component is our key object of interest, and
we refer to it as Core Wage Inflation. To validate our approach, we conduct a real-time
forecast comparison against a random-walk benchmark. Random-walk forecasts are
known to be hard to improve upon in the price inflation literature (see, e.g., Atkeson and
Ohanian [2001], Stock and Watson [2008])). Yet we find that our approach outperforms
the random-walk alternative, especially at short horizons and at the industry level.

The second contribution of our paper is to empirically document the dynamics of
wage inflation and its drivers using our model. While wage growth is characterized by
substantial monthly variation, the largest movements in Core Wage Inflation coincide
with the episodes of greatest macroeconomic significance in our sample. Core Wage
Inflation falls substantially during the 2001 and 2008 recessions, and rises sharply at
the beginning of 2021, at the onset of the post-pandemic inflation surge episode.

Our third contribution is to quantify the relative importance of economy-wide versus
industry-specific shocks for the evolution of aggregate wage inflation. We find that most
of the variation in the persistent component of nominal wage growth is common across
industries, especially during the post-pandemic surge in inflation. By contrast, the
estimated sector–specific component appears to capture lower frequency movements
and has been declining since the 1990s, albeit tentatively picking up after COVID-19.4

Another key empirical question that our framework allows us to explore is how
synchronized nominal wage growth is with labor market tightness and measures of
price inflation. We find that changes in Core Wage Inflation (and in its common
component) are strongly contemporaneously correlated with changes in the vacancy-
to-labor force ratio, the unemployment rate, and several measures of inflation. These
correlations are stronger than for other popular measures of aggregate wage growth.
As a result, our estimates tend to lead these alternative measures and appears better
aligned with labor market tightness. This illustrates the importance of appropriate
filtering and of accounting for time aggregation in a formal way.

Our last contribution is to document the role of worker heterogeneity for aggregate
3This methodological contribution is novel and potentially relevant for the empirical analysis of

other data sets subject to temporal aggregation.
4In an early related contribution, Watson and Engle [1981] find that a highly persistent single common

factor explains most of the variation across industries using wage data for the metropolitan area of Los
Angeles. Ahn, Chen, and Kister [2020] use a dynamic factor model on quarterly data from the Current
Employment Survey (CES) to extract the common component of inflation in average hourly earnings
across a large number of industries. In addition to the data, an important difference is that Core Wage
Inflation measures both common and sector-specific persistent components in wage inflation while their
measure targets only the common components (both persistent and transitory).
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nominal wage growth. We do this by re-estimating our model using alternative cross-
sections of the data based on race, gender, education, age, and other demographics. Our
findings about the dynamics of wage inflation and the synchronicity with labor market
tightness are robust. Most importantly, none of the alternative cross-sections subverts
the conclusion that Core Wage Inflation is mostly driven by its common component
during the three episodes of greatest macroeconomic significance in our sample: the
2001 and 2008 recessions, and the post-pandemic inflation surge. To be more specific,
the common factor explains a large share of the fall in Core Wage Inflation during
the two recessions (for example, between 50% and 85% of the 2008-2009 drop across
the cross-sections we consider). The pattern is even stronger during the 2021 inflation
surge, when the common component accounts for at least 80% of the increase in Core
Wage Inflation. Additional estimates using data going back to the 1960s suggest that
this is not specific to the post-pandemic period: the common factor also explained the
majority of Core Wage Inflation fluctuations during the inflationary spikes of the 1970s.
We see this empirical pattern as a useful benchmark for models of wage determination
with aggregate shocks and cross-sectional heterogeneity.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3
describes the model and estimation method. Section 4 develops our empirical analysis,
and Section 5 concludes.

2 Wage inflation data

Figure 1 shows three commonly used measures of wage inflation derived from US data:
the Atlanta Fed Wage Growth Tracker (AWGT), Average Hourly Earnings (AHE), and
the Employment Cost Index (ECI). We make three observations. First, composition
matters. The AWGT and the ECI adjust for changes in the composition of the workforce
by considering, respectively, the median wage growth within-worker and the average
compensation growth within-job. By contrast, wage inflation based on AHE is growth
in average hourly earnings. As a result, AHE exhibits large swings following the
onset of the Covid pandemic, when restrictions affected many low-paid jobs. These
movements are not present in the AWGT and the ECI. Similarly, growth in AHE slightly
increases during the Great Recession (2007m12-2009m6), while the AWGT and growth
in the ECI start decreasing during the recession. Second, the frequency at which these
series are released differ across data sets. AHE and the AWGT are released monthly,
while the ECI is quarterly. Third, the AWGT and, to a lesser extent, AHE tend to be
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FIGURE 1. Measures of Wage Inflation in the US

NOTES. Measures of the 12-month rate of wage inflation over the period 2005m1-2023m9.

volatile in the short-run.
An objective of this paper is to propose a measure of wage inflation that provides

a reliable signal for the evolution of the marginal cost of labor in real time. We then
need to (i) account for changes in the composition of the workforce, and (ii) use data
released on a regular basis. In our baseline analysis, we therefore use monthly data on
nominal wage growth at the worker level from the Current Population Survey (CPS).5

Specifically, we define wage inflation as the median growth in the hourly wage of
individuals observed twelve months apart.6 Letting t denote a month and i denote
some partition of the data, such as industries or occupation groups, the 12-month rate

5We use data between 1997m1 and 2023m9. Our measure can be updated each month when the CPS
is released. We start our sample in 1997 because there are gaps in the wage variables we are using in
earlier periods.

6We show in Appendix E that our results are similar, albeit with less precise estimates, if we use
average growth. The hourly wage is for the person’s “usual” weekly earnings and “usual” hours, which
include the variable part of compensation (overtime pay, tips, commissions). This definition is similar to
the Atlanta Fed WGT, though the headline figure reported by the Atlanta Fed (Figure 1) is a three-month
moving average [Atlanta Fed, 2023].
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of wage inflation wi,t in i is defined as

wi,t = ln Wi, j50,t − ln Wi, j50,t−12,(1)

where j50 denotes the individual with median 12-month wage growth in group i and
W denotes hourly wages.

We consider individual wage changes from observations twelve months apart due
to the interview structure of the CPS. This directly adjusts for seasonal factors. But it
also implies that this measure of wage inflation tends to lag actual month-on-month
changes. To see this, consider the case of a worker with no month-on-month wage
growth for eleven months and 0.1% in the twelfth month. Their twelve-month apart
wage change is 0.1%, but their annualized month-on-month change in wages, the object
of interest to monitor wage inflation, is 12 × 0.1% = 1.2%. We fully account for time
aggregation in the measurement framework introduced in Section 3.

An attractive feature of building our measure from worker-level data is that aggre-
gate wage inflation can be decomposed by both job and demographic characteristics.
For most of Section 4, we break down aggregate changes in nominal wages by industry.
We consider seven broad industry groups, which ensures that the sample size within
each cell is not too small: Construction and Mining, Education and Health, Finance
and Business Services, Leisure and Hospitality, Manufacturing, Public Administration,
and Trade and Transportation. This classification refers to workers’ current industry,
irrespective of their industry in their previous interview. In Section 4.2, we consider
many alternative worker characteristics, such as occupation groups, education groups,
regions, and wage quartiles. The definitions of these variables are given in Appendix A.

By defining wage inflation as wage changes for the same workers, our CPS measure
can be seen as the worker equivalent to standard measures of price inflation, which
summarize price changes for the same basket of goods and services. The ECI also
follows a similar approach by considering wage changes within jobs.7 While within-
worker and within-job wage changes in part adjust for composition effects (see Figure 1
and the literature on wage cyclicality using worker-level data starting with Bils [1985]),
there is still potentially selection in the type of workers who switch jobs and the type
of jobs available to these workers at any point in time. An active literature studies the
cyclicality of wages attempting to control for worker selection in job switching [Gertler,
Huckfeldt, and Trigari, 2020, Grigsby, Hurst, and Yildirmaz, 2021, Hazell and Taska,

7A job in the ECI is a small sector-industry-occupation cell. See here for definitions: https://www.
bls.gov/opub/hom/ncs/home.htm.
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2020]. In line with the well-established definition underlying the AWGT, we do not
impose further restrictions on the sample of workers. While we use CPS data as our
baseline, we also stress that the econometric framework we outline in the next section
can be estimated for any definition of wage inflation.

3 Model and estimation

We describe our modeling approach and our proposed measure of Core Wage Inflation
in this section. A challenge posed by the data we analyze is that nominal wage growth,
although observed every month, is measured as a 12-month growth rate. We are inter-
ested in the persistence of monthly wage growth, and we therefore need to explicitly
account for the monthly-to-yearly temporal aggregation.

Let wit be the 12-month rate of wage inflation for sector i and month t as defined
in Equation (1).8 We decompose wit into the contribution of a persistent (or trend)
component and a transitory (or noise) component:

wit =
1
12

12∑
ℓ=1

τ̃i,t+1−ℓ + ε̃it.(2)

In Equation (2), τ̃it is the persistent component for the unobserved monthly (annualized)
rate of wage growth, while ε̃it is the transitory error in the observed 12-month rate. To
capture the potential cross-sectional correlation across sectors, we further decompose
trend and noise into the sum of common (indexed by c) and sector-specific components:

τ̃it = ατ,itτct + τit,

ε̃it = αε,itεct + εit,

and we model trends as random walks and transitory errors as low-order moving
averages,

τct = τc,t−1 + σ∆τ,ctη∆τ,ct,

τit = τi,t−1 + σ∆τ,itη∆τ,it,

εct = (1 + θc1L + · · · + θcpLp)σε,ctηε,ct,

8Here, “sectors” generically denote any worker-level partition we consider, such as industry (our
baseline), age, occupations or regions.
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εit = (1 + θi1L + · · · + θiqL
q)σε,itηε,it.

Here, L is the lag operator andη∆τ,ct, η∆τ,it, ηε,ct, ηε,it are serially and mutually independent
N(0, 1), and independent of the loadings {ατ,it, αε,it}

n
i=1 and volatilities σ∆τ,ct, {σ∆τ,it}

n
i=1,

σε,ct, {σε,it}
n
i=1.

Time aggregation The monthly-to-yearly transformation is an important feature of
our framework and a key difference with models of price inflation such as Stock and
Watson [2016] in which monthly rates of change are observed directly. To interpret
what we do, write

Wi, j50,t

Wi, j50,t−12
=

Wi, j50,t

Wi, j50,t−1
×

Wi, j50,t−1

Wi, j50,t−2
× · · · ×

Wi, j50,t−11

Wi, j50,t−12
.

Consider the case ε̃it = 0 with no noise component in (2). Then,

τ̃it = 12 ln
( Wi, j50,t

Wi, j50,t−1

)
≈

(Wi, j50,t −Wi, j50,t−1

Wi, j50,t−1

)12

,

that is, τ̃it would measure the unobserved monthly annualized growth in median wage.
In practice, Wi, j50,t is an estimate based on survey data and expected to contain

measurement error. Due to the sampling design of the CPS, the workers who contribute
to Wi, j50,t/Wi, j50,t−12 and to Wi, j50,s/Wi, j50,s−12 differ whenever t , s. If workers are sampled
at random, the measurement error in wit and wis will then be independent for t , s.
The measurement error in wit will be independent of that in w jt for j , i by a similar
argument. This suggests having no common transitory error and white noise dynamics
for the sector-specific transitory components. For added flexibility, we do include εct

and we allow εit to be serially dependent through q > 0 and the presence of time-
varying volatility. Consistent with interpreting ε̃it as measurement error, we find εct to
be small and θiℓ to be close to zero. Importantly, σε,it appears to evolve in proportion to
the inverse of the square root of the number of workers surveyed each month, which is
exactly what one would expect if ε̃it represented the error in estimating median wage
growth in the population using its sample counterpart.9

9To be more precise, if nt is the number of workers surveyed during month t and σ̃ε,t is the (posterior
median estimate of the time-varying) standard deviation of the weighted-average transitory error ε̃t =∑n

i=1 sitε̃it, we find that most pairs (nt, σ̃ε,t) lie remarkably close to a line with no intercept, σ̃ε,t = 14.1/
√

nt,
and that corr

(
1/
√

nt, σ̃ε,t
)
= 0.9. See Appendix E for further discussion.
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What about genuine transitory shocks to monthly wage growth? To accommodate
them we would either enrich τ̃it to be itself the sum of persistent and transitory parts or
model ε̃it as an MA(12). In Appendix E we show that the estimates from this extended
model are similar to the more parsimonious model with random walk τct, {τit}

n
i=1 and

low p, q. Given the robustness of our results, the empirical analysis reported in Section
4 is based on the model introduced above.

Objects of interest In addition to the sector-level trend τ̃it we are interested in the
aggregate wage growth trend that we define for sectoral shares {sit}

n
i=1 as

τ̃t =

n∑
i=1

sitτ̃it =

 n∑
i=1

sitατ,it

 τct +

 n∑
i=1

sitτit

 .(3)

We thereafter refer to τ̃t as Core Wage Inflation. Similar to sector-level trends, Core
Wage Inflation is driven both by common persistence across sectors and by a weighted
average of sector-specific trend movements. We report this decomposition in Section 4.
A technical point to note is that the contribution of common and idiosyncratic com-
ponents to the level of the trend is only pinned down by an arbitrary normalization.10

The contributions of common and idiosyncratic components to the changes in the trend,
on the other hand, are not subject to the same caveat. Hence, we focus on changes as
opposed to levels when discussing this decomposition below.

Time-varying parameters In specifying the dynamics of the loadings and (log) volatil-
ities, we follow Del Negro and Otrok [2008] and Stock and Watson [2016] and model
them as random walks with small variances, i.e.,

∆αm,it = γα,m,iνα,m,it, m = τ, ε, i = 1, . . . ,n,

∆ ln σ2
m, jt = γσ,m, jνσ,m, jt, m = ∆τ, ε, j = c, 1, . . . ,n,

with innovations {να,τ,it, να,ε,it}
n
i=1, νσ,∆τ,ct, {νσ,∆τ,it}

n
i=1, νσ,ε,ct, {νσ,ε,it}

n
i=1 assumed serially and

cross-sectionally independent N(0, 1). This is a standard approach to allow for param-
eters that drift slowly over time. It can accommodate trends in the correlations across

10This is because the locations of {ατ,itτct}
T
t=1 and {τit}

T
t=1 can be changed by simply adding and sub-

tracting an arbitrary constant without affecting the data. We impose τc1 = 0 to eliminate this ambi-
guity. Similarly, ατ,itτct and αε,itεct are invariant to multiplying ατ,it or αε,it by a constant and dividing
τct, σ∆τ,ct, εct, σε,ct accordingly. Hence we fix σ∆τ,c1 = σε,c1 = 1. See Del Negro and Otrok [2008] for further
discussion on the normalizations.
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sectors and noisiness of the different series.

Estimation Our model has data wt = {wit}
n
i=1, time-invariant parameters

θ =
(
{θcℓ}1≤ℓ≤p, {θiℓ}1≤ℓ≤q,1≤i≤n

)
,

γ =
(
{γα,m,i}m=τ,ε,1≤i≤n, {γσ,m, j}m=∆τ,ε, j=c,1,...,n

)
,

time-varying parameters

λt =
(
{ατ,it, αε,it}

n
i=1, σ∆τ,ct, {σ∆τ,it}

n
i=1, σε,ct, {σε,it}

n
i=1

)
,

and latent variables

ξt =
(
τct, {τit}

n
i=1, εct, {εit}

n
i=1

)
.

We use Bayesian methods to estimate the parameters and make inferences about the
latent components. Specifically, we formulate a prior on (θ, γ) and we simulate a
Markov chain {θ(s), γ(s), {λ(s)

t }, {ξ
(s)
t }}

S
s=1 that possesses as invariant distribution the joint

posterior given the data {wt}. We can then use the draws {ξ(s)
t }

S
s=1 to form point and set

estimates of the aggregate trend τ̃t, the sector-level trends {τ̃it}
n
i=1, and decomposition

of trend changes over time in terms of common and sector-specific contributions. The
priors and the Markov Chain Monte Carlo (MCMC) algorithm used for estimation and
filtering are described in detail in Appendix B. Monte Carlo simulations showing that
our estimation algorithm performs well in small samples are reported in Appendix C.

Validation We conduct a real time forecast comparison against a random walk bench-
mark to validate our framework. We choose a random-walk benchmark because these
forecasts are known to be hard to improve upon in the price inflation literature (see,
e.g., Atkeson and Ohanian [2001], Stock and Watson [2008]). As noted above, two fea-
tures distinguish our approach: (i) the explicit treatment of temporal aggregation in the
persistent component and (ii) the use of the cross-sectional dimension. The forecasting
exercise we present here is designed to assess both.

We construct a total of 300 datasets, each of them extending from January 1997 to
T where T ranges from October 1998 to September 2023. For each dataset (indexed by
T), we run our model and recover point estimates (the posterior median) of the path of
the trend in wage growth at the aggregate τ̂T

t and at the sectoral level {τ̂T
it}

n
i=1. We then
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define the following forecasts based on our model

f T(h) =
∑12−h
ℓ=0 τ̂

T
t−ℓ + hτ̂T

t

12
, f T

i (h) =

∑12−h
ℓ=0 τ̂

T
i,t−ℓ + hτ̂T

it

12
,

if the forecasting horizon h < 12 and f T(h) = τ̂T
t , f T

i (h) = τ̂T
it if the forecasting horizon

h ≥ 12. Thus, f T(h) and f T
i (h) are point forecasts of 12-month wage growth at time T+ h

given information available at T.
We compare f T(h) and f T

i (h) with the random-walk forecasts f T
RW(h) = wT and

f T
RW,i(h) = wiT, where the 12-month rate of wage inflation w is defined as in Equation

(1). Table 1 shows that f T(h) consistently outperforms f T
RW(h) for a selection of short

and long horizons h, as evidenced by the root mean square forecast error (RMSFE). The
improvement is particularly clear for aggregate wage growth at the 3-month horizon,
decreasing with h thereafter.

At the sector level, f T
i is a substantially more accurate forecast than f T

RW,i. The im-
provements occur for all sectors and horizons, but they are largest for the sectors that
generally experience more variability in wage growth. Table 1 illustrates this for con-
struction & mining and for leisure & hospitality, two sectors that received a lot of attention
during the Great Financial Crisis and the COVID-19 Pandemic, and coincidentally the
two sectors with the most volatile wage growth.

4 Empirical analysis

In the first part of this section, we present our main empirical results from the model
estimated with our baseline industry partition. We then show how our conclusions
are broadly unaffected when re-estimating the model with alternative partitions other
than industry.

4.1 The dynamics of Core Wage Inflation

We estimate the model breaking down wage inflation into seven broad industry groups.
wit is defined as in Equation (1) and thus is median nominal wage growth in industry i.
Figure 2a shows our estimated Core Wage Inflation (solid blue line) together with the
realized 12-month wage growth from the CPS data (black line). A 68 percent posterior
probability band is given by the blue shaded areas around Core Wage Inflation.

We highlight two main takeaways. First, the underlying data exhibit a lot of monthly
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TABLE 1. Forecast comparison

RMSFE
h = 3 h = 6 h = 9 h = 12

f T(h) 0.507 0.662 0.803 0.929
f T
RW(h) 0.578 0.682 0.820 0.936

Difference −0.071 −0.020 −0.016 −0.018
p-value (0.00) (0.23) (0.29) (0.09)

Construction and Mining
f T
i (h) 1.906 1.978 1.929 2.001

f T
RW,i(h) 2.583 2.680 2.456 2.451

Difference −0.677 −0.702 −0.538 −0.450
p-value (0.00) (0.00) (0.00) (0.00)

Leisure and Hospitality
f T
i (h) 1.736 1.848 1.947 2.113

f T
RW,i(h) 2.248 2.198 2.280 2.450

Difference −0.512 −0.349 −0.333 −0.335
p-value (0.00) (0.00) (0.00) (0.00)

NOTES. We report p-values for a one-sided test of the null hypothesis that the RMSE of our model forecast
is not lower than the RMSE for the random-walk forecast. We computed them by block bootstrap with
blocks of size 8.

variation that is purged by our approach. Most of the high-frequency variation in nom-
inal wage growth is ascribed to measurement error in our model (the ε̃it terms), as
discussed in Section 3. Figure 2a makes clear that substantial movements in the per-
sistent component of wage inflation coincide with significant macroeconomic events,
such as the Great Recession or the inflation surge episode starting in 2021.

As an example, we can analyze the wage inflation surge episode starting in 2021
through the lens of our model. Core Wage Inflation ranged between 3.2 percent and
3.7 percent between 2016 and 2020, and then shot up in early 2021, nearly doubling
over the course of the year. As such, the model assigns almost all of the nominal wage
growth observed in the data to the persistent component.11 Our estimates of Core Wage

11As discussed in Section 3, the trend extracted by the model is expressed in terms of annualized
monthly wage growth, which explains why it leads the actual year-over-year wage growth series in the
chart.
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FIGURE 2. Core Wage Inflation and its Decomposition

(a) Estimates of Core Wage Inflation

(b) Common and Sector-Specific Components of Core Wage Inflation

NOTES. (a) Blue shaded areas denote 68 percent probability bands; grey shaded areas indicate recessions.
(b) Shaded areas denote 68 percent probability bands. The dashed black line is nominal wage growth, the
red line is the common component

(∑n
i=1 sitατ,it

)
τct, while the blue line is the sector-specific component∑n

i=1 sitτit. Each of these three series are plotted as a cumulative change from their average over the
period 2017–2019, which is therefore centered at 0.

Inflation peak in December 2021 and has been slowly declining thereafter, although it
was still above its pre-pandemic level in September 2023.

Second, we use our framework to further investigate whether fluctuations in Core
Wage Inflation are the result of sector-specific shocks. Recall from Equation (3) that
Core Wage Inflation can be written as the sum of a common component

(∑n
i=1 sitατ,it

)
τct
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and a sector-specific component
∑n

i=1 sitτit. Figure 2b depicts the evolution of each of
these components over time.

We find that most of the variation in Core Wage Inflation is explained by the common
persistent component of nominal wage growth, both during the two NBER recessions
and the inflation surge episode in the sample.12 By contrast, the estimated sector-specific
persistent component of the model captures lower frequency movements. We find that
it steadily falls over the period, which implies an increase in the cross-sector correlation
of nominal wage growth. This may be the result of slow–moving composition changes,
with relatively high–wage growth sectors becoming smaller over the sample period
(e.g., manufacturing). The sector-specific component of Core Wage Inflation increases
following the pandemic (although the probability bands are large), but it remains below
its level of the early 2000s.

Our estimates imply that variations in the industry-specific components are second-
order for aggregate fluctuations in Core Wage Inflation. However, they do not imply
that changes in wage inflation are the same in all industries since the loadings αit are
specific to each industry, and their “sensitivity” to the common factor can therefore
differ. As a result, we still find that the common factor is preeminent for industries
that can be expected to be specifically impacted at some point in our sample, such
as construction during the Great Recession and leisure and hospitality following the
COVID-19 pandemic (see Appendix D.1). One exception is Public Administration,
which features quantitatively important sector–specific dynamics. This is consistent
with micro-level evidence suggesting that wages in the public sector take longer to
adjust (Barattieri, Basu, and Gottschalk [2014]).

To sum up, our framework assigns most of the business cycle variation in nominal
wage inflation to Core Wage Inflation. In turn, Core Wage Inflation is mostly driven by
the component that is common across industries. In addition, we find that changes in
Core Wage Inflation (and in its common component) are significantly correlated with
changes in the vacancy to labor force ratio, the unemployment rate, core PCE price
inflation, and inflation in core services ex housing. Importantly, these correlations are
stronger not only relative to raw CPS data, but also relative to other popular measures of
aggregate wage growth, such as AHE and the ECI. For example, the contemporaneous
correlation between monthly changes in the vacancy to labor force ratio and monthly

12This finding is consistent with the analysis of sectoral mismatch during the Great Recession in Şahin,
Song, Topa, and Violante [2014]. They find limited evidence of sectoral mismatch between job seekers
and job openings. While wages are not analyzed in their study, this result is in line with sectoral wage
inflation being driven by a common trend.
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changes in Core Wage Inflation is 0.32 (p-value< 0.01), while it is much lower and
insignificant for ECI, 0 for the AWGT and even negative for AHE. We report these
results in detail in Appendix D.3.

A key reason for these findings is that our filtering approach to time aggregation
delivers a measure of wage inflation that is timelier than alternatives. To show this, in
Figure 3 we plot Core Wage Inflation, the AWGT, and the growth rate in ECI together
with labor market tightness, for the three most significant macroeconomic episodes of
the last 25 years. Our measure of Core Wage Inflation always leads alternative measures
of wage growth: importantly, it is better aligned to labor market tightness, moving
almost contemporaneously.13 As described in Section 3, our estimates are derived
purely from wage data, so the patterns shown in Figure 3 are the direct result of taking
into account the time aggregation implied by 12-month changes in our definition of
wage inflation (1).

4.2 Heterogeneity and the aggregate dynamics of Core Wage Inflation

In this section, we investigate the robustness of our finding that aggregate wage inflation
is driven by a common component. We consider a series of alternative partitions of the
data that represent likely sources of heterogeneity in nominal wage growth.

Our measure of wage inflation comes from the aggregation of changes in nominal
wages at the worker level, which do not occur frequently. Many explanations for these
nominal wage rigidities have been put forward in the literature. Examples include
employers insuring workers against firm-level shocks, fairness considerations related
to efficiency, and institutionalized wage setting, such as employers setting wages at the
national level or minimum wage institutions.14 All of these explanations are likely to
result in different degrees of nominal wage stickiness for separate groups of workers.
As just one example, national wage setting by employers or minimum wage regulations
are more likely to apply to low-skill workers.15

To gauge whether this micro-level heterogeneity affects our earlier discussion on

13In standard job search models, wages and labor market tightness strongly co-move [see Pissarides,
2000].

14On insurance motives, see for instance a seminal paper by Barro [1977] and Azariadis and Stiglitz
[1983] for a review. Early papers on the theory of efficiency wages include Stiglitz [1976] and Akerlof
and Yellen [1990].

15See Avouyi-Dovi, Fougère, and Gautier [2013] and Minton and Wheaton [2022] for recent work on
minimum wages and downward wage rigidity. Hazell, Patterson, Sarsons, and Taska [2022] show how
national wage setting increases wage rigidity.
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FIGURE 3. Labor Market Tightness and Wage Inflation

(a) 2001m3=1 (b) 2007m12=1

(c) 2020m6=1

NOTES. The red solid line represents labor market tightness measured by the ratio of vacancies to the
sum of employed and unemployed workers. We apply a symmetric one lag-one lead moving average to
smooth it. Dotted lines are Core Wage Inflation (blue), the Atlanta Fed Wage Growth Tracker (yellow)
and the year-on-year change in the employment cost index (green).

aggregate wage inflation, we re-estimate our model for a series of partitions that we
derive from the CPS. Besides the industry partition discussed in Section 4.1, we consider
partitions based on occupation, education level, region, wage quartile, age, gender, and
race.16 For each group, we obtain estimates of Core Wage Inflation and its common

16We follow the definitions used in the Atlanta Fed Wage Growth Tracker. See Appendix A for details.
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and idiosyncratic components given in Equation (3).
We summarize our estimation results in Table 2, focusing on the three largest changes

in Core Wage Inflation in the sample: the 2001 Recession (2001m3-2001m11), the Great
Recession (2007m12-2009m6), and the post-pandemic wage inflation surge episode
(2020m6-2022m2).17 We report the fraction of the cumulative change in Core Wage
Inflation accounted for by its common component over the duration of each episode.
We find that the common component remains an important determinant of Core Wage
Inflation across the various partitions, but to a lesser extent during the 2001 recession
(36% to 91%) and the Great Recession (50% to 90%). Industries are measured to have
a larger contribution of the common component of wage inflation than any other cut
of the data across the three episodes considered (greater than 90% overall), suggesting
that most of the industry-specific trend movements reflect differential loadings (the α’s
in our model) to aggregate fluctuations.

We are confident that our results on the importance of the common component is
not a limitation of the econometric framework because some sectors are estimated to
have quantitatively important sector-specific trends. One example we have already
mentioned is Public Administration in the industry-level model. As an additional
check, we use Monte Carlo simulations to show that our method is not biased towards
attributing an excessive role to the common component in Appendix C.

Notably, we find that the common component of wage inflation accounts for most
of the increase in Core Wage Inflation across the various partitions during the 2021
inflation surge episode. The contribution of the common component is greater than
82% across subgroups during that episode, typically higher than during the the two
recessions in the sample.18

This finding hints at the existence of a form of asymmetry between recessionary and
inflationary episodes, with group-specific forces being more important in the former. To
investigate whether this conclusion is specific to the pandemic, we have also estimated
our model using average hourly earnings data from the Current Employment Statistics
(CES), which, despite the composition issues discussed in Section 2, has the advantage
to start in 1964. Our results, reported in Appendix F, show that the common persistent

In unreported results, we also find that our results are robust to interactions of groups (e.g.: age and
occupation).

17The recession episodes follow NBER dating – with start date one month before the onset of the
recession. The inflationary episode reflects trough-to-peak dates of core PCE inflation. The results are
robust to considering slightly different start and end dates.

18In Appendix D.2 we show that the estimated change in Core Wage Inflation in 2021 is very robust
across specifications.

17



TABLE 2. Contribution of common trend to Core Wage Inflation during selected episodes

2001 Recession Great Recession 2021 Inflation Surge

Industry 0.91 0.90 0.92
(0.65, 1.17) (0.76, 1.02) (0.81, 1.03)

Occupation 0.58 0.71 0.86
(0.25, 0.87) (0.49, 0.92) (0.70, 1.02)

Education 0.62 0.74 0.83
(0.31, 0.94) (0.52, 0.95) (0.67, 1.00)

Region 0.83 0.86 0.94
(0.51, 1.09) (0.73, 0.98) (0.83, 1.04)

Wage quartile 0.70 0.75 0.89
(0.34, 1.05) (0.56, 0.93) (0.73, 1.04)

Age 0.61 0.74 0.87
(0.19, 0.98) (0.54, 0.95) (0.68, 1.05)

Gender 0.43 0.54 0.82
(0.08, 0.80) (0.28, 0.81) (0.60, 1.03)

Race 0.36 0.50 0.84
(0.03, 0.77) (0.20, 0.78) (0.62, 1.03)

NOTES. Each row refers to a different model, using the cross–sectional variable reported, defined
following the Atlanta Fed Wage Growth tracker definition and detailed in Appendix A. The three
episodes in the columns refer to the following periods: 2001m3-2001m11, 2007m12-2009m6, and 2020m6-
2022m2. For each partition and episode, we compute the change in the common component of Core
Wage Inflation between the start and end of the period, as well as the change in the overall Core Wage
Inflation over the same horizon, and report the median of this ratio. We report a 68 percent posterior
probability interval in parentheses.

component is also the main driver of wage inflation during the inflation episodes of the
1970s. For instance, 78% of the 4.5 percentage point increase in wage inflation between
1965 and 1981 is estimated to be common across industries, while industry–specific
variation played a quantitatively bigger role during the Great Recession.

In conclusion, no specific subgroup, in the eight partitions that we consider, seems
to play a disproportionate role in driving the overall trend in nominal wage growth,
especially during inflationary periods. A useful case study is the model estimated with
wage quartiles. As recently study by Autor, Dube, and McGrew [2023], the COVID-
19 period has seen substantial wage compression, with nominal wage growth at the
bottom of the distribution being relatively stronger than in the upper echelons. While
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our estimated model suggests that nominal wage growth in the bottom wage quartile is
initially driven by group-specific forces, this has a relatively minor role for the evolution
of wage growth in the aggregate during the post-pandemic inflation surge.

We want to reiterate that our findings do not imply that there is no heterogeneity in
wage stickiness at the micro level, including during inflationary episodes. Instead, our
framework suggests that group-specific movements in nominal wage growth mostly
reflect differential sensitivity to an aggregate factor, rather than sector-specific trends.
By estimating this common factor, our model effectively isolates the key driver of
aggregate nominal wage growth.

5 Conclusion

We propose a new framework to measure the persistent (“core”) latent component of
monthly wage inflation by combining worker–level data with time series smoothing
methods that account for the temporal aggregation in the CPS. The resulting measure
of Core Wage Inflation allows us to establish four different sets of empirical facts.
First, Core Wage Inflation fluctuates substantially during episodes of macroeconomic
relevance (such as recessions and inflationary spikes). Second, most of its variation is
driven by a common component indicating a strong degree of cross-sectional correlation
across workers. Third, changes in Core Wage Inflation are strongly contemporaneously
correlated with changes in measures of labor market tightness. And fourth, observable
heterogeneity in worker and job characteristics, although important for the level and
sensitivity to the common component, is second order for the aggregate trend in wage
growth.

These facts provide an empirical basis against which to test models of the determi-
nation of wage inflation and labor market tightness that incorporate aggregate shocks
and heterogeneity. One avenue for future research is to perform such tests. Another is
to replicate our empirical analysis in other countries, particularly in those with different
labor market institutions and wage-setting practices. Finally, since wage inflation is
related to changes in the marginal cost of labor, yet another avenue is to develop a
flexible empirical model of the persistent components of price and wage inflation.
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